GTI 5G Device Function and Performance Test Specification

GTI

Version:	V4.2	
Deliverable Type	 □ Procedural Document √ Working Document 	
Confidential Level	 ✓ Open to GTI Operator Members ✓ Open to GTI Partners □ Open to Public 	
Program	5G eMBB	
Working Group	Terminal WG	
Project	Project 1: Sub 6GHz	
Task	Task-T-PM2-PJ1-10 5G Device Certification and IODT	
Source members	China Mobile, Anritsu, Keysight, R&S, Datang, Starpoint	
Support members	Huawei, Qualcomm, Vivo, ZTE, Cheerzing	
Last Edit Date	17-September-2021	
Approval Date		

Confidentiality: This document may contain information that is confidential and access to this document is restricted to the persons listed in the Confidential Level. This document may not be used, disclosed or reproduced, in whole or in part, without the prior written authorization of GTI, and those so authorized may only use this document for the purpose consistent with the authorization. GTI disclaims any liability for the accuracy or completeness or timeliness of the information contained in this document. The information contained in this document may be subject to change without prior notice.

Table of Contents

Tabl	le of (Contents.		4	
1	Scope				
2	Definitions, Symbols and Abbreviations				
3	Reference				
4	Test	t Environ	ment	9	
	4.1	Defau	It Test Environment	9	
		4.1.1	Special Test Environment	10	
		4.1.2	Cell Configuration	10	
		4.1.3	USIM Parameters	12	
		4.1.4	Common Procedures	12	
		4.1.5	Default End Points	13	
	4.2	Appli	cability for the UE Configuration	14	
5	Bas	ic Function	on	14	
	5.1	PLM	N Selection	14	
		5.1.1	PLMN Selection, Multi-RAT Background, Select the highest priority HPI	LMN,	
		Automa	tic Mode	14	
	5.2	Cell S	election	17	
		5.2.1	Multi-mode Environment Cell Selection, NR Cell Available	17	
		5.2.2	Multi-mode Environment Cell Selection, E-UTRAN Available	19	
		5.2.3.	Multi-mode Environment Cell Selection, NR Cell Available	21	
		5.2.4.	Multi-mode Environment Cell Selection, NSA Cell Available	23	
		5.2.5	Initial Cell Selection from Power-Up	25	
	5.3	RRC	connection/connection reconfiguration	28	
		5.3.1	RRC connection re-establishment, radio link failure, re-establish to a Pre-	pared	
		Inter-Fre	eq cell	28	
		5.3.2	BWP configuration, downlink and uplink BWP addition /release		
	5.4	Regis	tration/De-registration	34	
		5.4.1	Initial Registration, SA	34	
	5.5	NSA	37		
		5.5.1	Multi-mode Environment Cell selection for NSA	37	
		5.5.2	Initial Registration, NSA	40	
		5.5.3	Bandwidth Part Configuration, SCG, EN-DC		
		5.5.4	NSA-RLF	46	
	5.6	CSI-R	S Measurement	60	
		5.6.1	CSI Reporting Periodic in PUSCH	60	
		5.6.2	CSI Reporting Aperiodic in PUSCH	63	
		5.6.3	CSI Reporting Aperiodic in PUSCH	66	
		5.6.4	CSI-RS Based Intra Frequency Measurements on Neighbour Cell Beams	69	
		5.6.5	CSI-RS Based Inter Frequency Measurements on Neighbour Cell Beams	72	
	5.7	RRC	Inactive mode cases in SA	76	
		5.7.1	RRC Connected Mode to RRC Inactive Mode and RRC Resume Procedure	76	
		5.7.2	Periodic RNA Update Procedure in RRC Inactive Mode		
				4	

GTI

GTI 5G Function and Performance Test Specification v4.2 – September 2021

		5.7.3	RNA Update in RRC Inactive Mode for Cell Reselection to new RNA cell	
	5.8	Acces	ss Barring, Access Class	
		5.8.1	Cell Barred while in RRC IDLE State	
		5.8.2	Access Categories for Different Services	
		5.8.3	Access Barring Check in RRC	
	5.9	DCI_	based BWP Switching	92
		5.9.1	BWP change:upto2, downlink and uplink BWP switching by DCIs	92
		5.9.2	BWP Change Advance, switching BWPs upto4: BWP1/BWP2/BWP3/BW	VP4 by
		DCIs.	95	
6	Mo	bility		98
	6.1	Intra-	system (NR) Mobility	98
		6.1.1	Intra-system cell reselection	98
		6.1.2	Intra-system handover	101
	6.2	Inter-	RAT Mobility	115
		6.2.1	Inter-RAT cell reselection	115
		6.2.2	Inter-RAT Handover	131
		6.2.3	Inter-RAT Redirection Service	135
	6.3	NSA	140	
		6.3.1	Cell Reselection, from NSA P-Cell to E-UTRAN cell	140
		6.3.2	Cell Reselection, from E-UTRAN cell to NSA P-Cell	143
		6.3.3	P-Cell Handover with SCG change, Data continuity	146
		6.3.4	P-Cell Handover with SCG unchange, Data continuity	150
		6.3.5	Data Session continuity, from NSA cell to E-UTRAN cell	153
		6.3.6	Data Session continuity, from E-UTRAN cell to NSA cell	157
		6.3.7	SCG change with P-Cell remain the same, Data continuity	160
		6.3.8	Inter-band SCG change with P-Cell unchanged, Data continuity	164
		6.3.9	Inter-band SCG change with P-Cell unchanged, Voice Call and Data continue	ty .165
7	Ser	vice		167
	7.1	Voice	167	
		7.1.1	Redirection from NR to E-UTRAN, MO call, SA mode	167
		7.1.2	Redirection from NR to E-UTRAN, MT call, SA mode.	170
		7.1.3	VoLTE MO Call with E-UTRAN Cell, UE works in NSA mode	173
		7.1.4	VoLTE MT Call with E-UTRAN Cell, UE works in NSA mode	176
		7.1.5	VoNR MO voice Call, UE works in SA mode	178
		7.1.6	VoNR MT voice Call, UE works in SA mode	181
		7.1.7	VoNR MO voice Call, with UL throughput under static channel	184
		7.1.8	VoNR MT voice Call, with DL throughput under static channel	190
		7.1.9	Inter-RAT handover between NR and E-UTRAN cells with IMS MO voice C	Call 196
		7.1.10	Data Session continuity, Inter-RAT handover between NR and E-UTRAN ce	lls with
		IMS M	Γ voice Call	201
8	Roa	ming		206
9	Pov	ver Consu	Imption	206
	9.1	Idle N	- Aode	206
		9.1.1	Idle Mode, Power Consumption, Cell Centre, SA	206

		9.1.2	Idle Mode, Power Consumption, Cell Edge, SA	208
		9.1.3	Idle Mode, Power Consumption, Cell Centre, NSA	210
		9.1.4	Idle Mode, Power Consumption, Cell Edge, NSA	213
		9.1.5	Idle mode with intra Frequency Measurement, Power Consumption	215
		9.1.6	Idle mode with inter Frequency Measurement, Power Consumption	218
	9.2	RRC	Connection mode	220
		9.2.1	Connected Mode, Power Consumption	220
		9.2.2	Inter Frequency Handover, Power Consumption, LTE to LTE	229
		9.2.3	Inter Frequency Handover, Power Consumption, NR Cell	234
	9.3	Voice	(VoLTE/VoNR)	237
		9.3.1	VoLTE MO Call with E-UTRAN Cell, Power Consumption	237
		9.3.2	VoNR MO call, Power Consumption	240
		9.3.3	VoLTE MT Call with E-UTRAN Cell, Power Consumption	242
		9.3.4	VoNR MT call, Power Consumption	245
	9.4	Data	Transmission, Power Consumption	248
		9.4.1	UL Data Transmission, Power Consumption, SA	248
		9.4.2	DL Data Transmission, Power Consumption, SA	258
		9.4.3	Bi-direction Data Transmission, Power Consumption, SA	262
		9.4.4	UL Data Transmission, Power Consumption, NSA	272
		9.4.5	DL Data Transmission, Power Consumption, NSA	286
		9.4.6	Bi-direction Data Transmission, Power Consumption, NSA	299
	9.5	Powe	r Consumption - Inactive Mode	313
		9.5.1	RRC Inactive Mode, Power Consumption, SA	313
		9.5.2	RRC Inactive Mode – RNA Update Timer Expiry, Power Consumption	315
	9.6	BWP,	Power Consumption	318
		9.6.1	Downlink Data Transmission with different BWP, Power Consumption, SA	318
		9.6.2	Uplink Data Transmission with different BWP, Power Consumption, SA	321
		9.6.3	Downlink Data Transmission with different BWP, Power Consumption, NSA.	323
		9.6.4	Uplink Data Transmission with different BWP, Power Consumption, NSA	325
10	Dat	a Throug	hput	327
	10.1	Dowr	llink TCP Throughput	327
		10.1.1	DL Throughput under static channel, DL 256QAM, DL4*4 MIMO	327
		10.1.2	DL Throughput under fading channel, DL 256QAM, DL4*4 MIMO	331
		10.1.3	DL Throughput under static channel, DL 256QAM, DL2*2 MIMO	334
	10.2	2 Uplin	k TCP Throughput	337
		10.2.1	UL Throughput under static channel, UL 64QAM, UL2*2 MIMO	337
		10.2.2	UL Throughput under static channel, UL 256QAM, Single TX, HPUE	340
		10.2.3	UL Throughput under static channel, UL 256QAM, UL2*2 MIMO	344
	10.3	Bidire	ectional UDP Throughput	347
		10.3.1	Bidirectional Throughput under static channel,256QAM, DL 4*4 and UL	2*2
		MIMO	347	
		10.3.2	Bidirectional Throughput under fading channel,256QAM, DL 4*4 and UI	2*2
		MIMO	351	
		10.3.3	Bidirectional Throughput under static channel,256QAM, DL 2*2 and UL Sing	le TX

		354	
	10.4 Down	nlink TCP Throughput, NSA	357
	10.4.1	DL Throughput under static channel, NSA	358
	10.4.2	DL Throughput under fading channel, NSA	361
	10.4.3	DL Throughput under static channel on SCG, DL 256QAM, NSA	366
	10.4.4	DL Throughput under fading channel on SCG, NSA	369
	10.5 Uplin	ık TCP Throughput, NSA	374
	10.5.1	UL Throughput under static channel, UL 64QAM, NSA	374
	10.5.2	UL Throughput under static channel, UL 256QAM, NSA	378
	10.5.3	UL Throughput under static channel on SCG, UL 64QAM, NSA	382
	10.5.4	UL Throughput under static channel on SCG, UL 256QAM, NSA	386
	10.6 Bidir	ectional UDP Throughput, NSA	390
	10.6.1	Bidirectional Throughput under static channel, 256QAM, NSA	390
	10.6.2	Bidirectional Throughput under fading channel, NSA	394
	10.6.3	Bidirectional Throughput under static channel on SCG, UL 64QAM, NSA	398
	10.6.4	Bidirectional Throughput under static channel on SCG, UL 256QAM, NSA.	402
	10.6.5	Bidirectional Throughput under fading channel on SCG, NSA	406
11	Latency		410
	11.1 Later	cy Basic Tests	410
	11.1.1	Control Plane Latency – Basic Test	410
	11.1.2	User Plane Latency – Basic Test	413
12	High Speed	Train	415
13	Beam Manag	gement	416
	13.1 Beam	n Determination – Beam change based on power level	416
	13.2 Beam	n Sweeping – Initial Access	417
	13.3 Beam	n Failure and Recovery	419
14	NR Carrier A	Aggregation	421
	14.1 Down	nlink NR Carrier Aggregation	421
	14.1.1	Throughput with DL NR CA	421
	14.1.2	Mobility	432
	14.2 Uplin	k NR Carrier Aggregation	470
	14.2.1	Throughput with DL NR CA	470
	14.2.2	Mobility	489
	14.3 SUL	509	
	14.3.1	Throughput	509
	14.3.2	Mobility	521
Ap	pendix A Test	Channel Parameters	539
Ap	pendix B Docu	ment Change Record	539

1 Scope

This specification targets enhanced Mobile Broadband (eMBB) scenario for 5G Sub-6GHz Chipset, Module and Device products testing. It stipulates the 5G device function and performance test in lab for NSA Mode (Option 3/3a/3x) and SA (Option 2).

This specification provides evaluation criteria for basic functions and performance in the 5G test. Considering various test requirements, specific test cases and methods are designed, together with the basic requirements for each test category, number of test devices, and tailored agreements. This specification is one of the 5G Sub-6GHz device test specifications which are used in GTI 5G Device Certification.

Abbreviation	Explanation	
AMC	Adaptive Modulation and Coding	
BLER	Block Error Rate	
СР	Cyclic Prefix	
DL	Downlink	
eNB	Evolved NodeB	
EPC	Evolved Packet Core	
GBR	Guaranteed Bit Rate	
MCS	Modulation and Coding Scheme	
МІМО	Multiple Input Multiple Output	
NGBR	Non-Guaranteed Bit Rate	
ОМС	Operation and Maintenance Center	
PDSCH	Physical Downlink Shared Channel	
PUSCH	Physical Uplink Shared Channel	
RSRP	Reference Signal Received Power	
SIMO	Single Input Multiple Output	
SM	Space Multiplexing	
SNR	Signal to Noise Ratio	
UDP	User Datagram Protocol	
UE	User Equipment	
UL	Uplink	

2 Definitions, Symbols and Abbreviations

3 Reference

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

[1]	3GPP TS 38.104	Base Station (BS) radio transmission and reception
[2]	3GPP TS 38.201	LTE Physical Layer – General Description
[3]	3GPP TS 38.211	Physical Channels and Modulation
[4]	3GPP TS 38.212	Multiplexing and channel coding
[5]	3GPP TS 38.213	Physical layer procedure
[6]	3GPP TS 38.214	Physical Layer – Measurements
[7]	3GPP TS 38.300	Overall description
[8]	3GPP TS 38.321	Medium Access Control (MAC) protocol
[9]	3GPP TS 38.322	Radio Link Control (RLC) protocol
[10]	3GPP TS 38.323	Packet Data Convergence Protocol (PDCP)
[11]	3GPP TS 38.331	Radio Resource Control (RRC)
[12]	3GPP TS 38.401	Architecture description
[13]	3GPP TS 38.410	Ng General aspects and principles
[14]	3GPP TS 38.411	Ng layer 1
[15]	3GPP TS 38.412	Ng signaling transport
[16]	3GPP TS 38.413	Ng Application Protocol (XnAP)
[17]	3GPP TS 38.414	Ng data transport
[18]	3GPP TS 38.420	Xn general aspects and principles
[19]	3GPP TS 38.421	Xn layer 1
[20]	3GPP TS 38.422	Xn signaling transport
[21]	3GPP TS 38.423	Xn application protocol (XnAP)
[22]	3GPP TS 38.424	Xn data transport
[23]	3GPP TS 38.304	User Equipment (UE) procedures in idle mode
[24]	3GPP TS 38.306	User Equipment (UE) radio access capabilities
[25]	3GPP TS 38.314	Evolved Universal Terrestrial Radio Access (E-UTRA);
		Layer 2 - Measurements
[26]	3GPP TS 23.203	Policy and charging control architecture
[27]	3GPP TS 23.401	General Packet Radio Service (GPRS) enhancements for
		E_UTRAN access
[28]	3GPP TS 24.301	Non-Access-Stratum (NAS) protocol for Evolved Packet
		System (EPS)

4 Test Environment

4.1 Default Test Environment

A network system simulator is used to model the gNB and 5GC. The default configuration of the simulator is described in "3GPP TS 38.508-1, 5GS; User Equipment (UE) conformance specification; Part 1: Common test environment" which contains definitions of reference conditions, test signals, default parameters, reference radio bearer configurations, common requirements for test equipment

and generic procedures.

4.1.1 Special Test Environment

If the test environment doesn't follow the default test environment and is common for several test cases, e.g. special cell configurations, the test environment should be described in this section.

4.1.2 Cell Configuration

4.1.2.1 Test Frequencies

	10010		
Operating	Frequency	Occupied Bandwidth	Range
Band	Configuration		(F_low – F_high)
n41	f1	100 MHz	2515M - 2615M
	f2	80 MHz	2515M - 2595M
	f3	60 MHz	2515M - 2575M
	f4	100 MHz	2575M - 2675M
	f5	60 MHz	2615M – 2675M
n79	f1	100 MHz	4800M - 4900M

Table 4-1: Test Frequencies for NR TDD

Table 4-2: Test Frequencies for NR FDD

Operating	Frequency	Occupied Bandwidth	Range
Band	Configuration		(F_low – F_high)
n28	f1	30MHz	UL703-733MHz
			DL758-788MHz
	f2	20MHz	UL703-723MHz
			DL758-778MHz
	f3	20MHz	UL713-733MHz
			DL768-788MHz

Table 4-3: Test Frequencies for E-UTRA TDD

Operating	Frequency	Occupied Bandwidth	Range
		Occupied Buildwidth	•
Band	Configuration		(F_low – F_high)
34	f1	15 MHz	2010M – 2025M
39	f1	20 MHz	1880M - 1900M
	f2	10 MHz	1900M - 1910M
	f3	15 MHz	1900M - 1915M
	f4	10 MHz	1905M - 1915M
40	f1	20 MHz	2325M - 2345M
	f2	20 MHz	2345M - 2365M
41	f1	20 MHz	2615M - 2635M
	f2	20 MHz	2635M - 2655M
	f3	20 MHz	2655M - 2675M

Table 4-4: Test Frequencies for E-UTRA FDD

Operating	Frequency	Occupied Bandwidth	Range
Band	Configuration		(F_low – F_high)
3	f1	10 MHz	UL: 1710M - 1720M
			DL: 1805M - 1815M
	f2	15 MHz	UL: 1720M - 1735M
			DL: 1815M - 1830M

f3	20 MHz	UL: 1710M - 1730M
		DL: 1805M - 1825M

Band Combinations	E-UTRA Band	NR Band	Note			
DC_3A_n41A	3A	n41A	Inter-band EN-DC			
DC_39A_n41A	39A	n41A	Inter-band EN-DC			
DC_3A_n79A	3A	N79A	Inter-band EN-DC			
DC_39A_n79A	39A	N79A	Inter-band EN-DC			

Table 4-5: Band combinations for NSA option3 (EN-DC, two bands)

Table 4-6: Test Frequencies for E-UTRA FDD

GSM Band	Bandwidth	f1(Mid)	f2(High)	f3(Low)
Band 8	25MHz	20	110	5
(GSM 900)		(UL:894MHz/	(UL:912MHz/	(UL:891MHz/
		DL:939MHz)	DL:957MHz)	DL:936MHz)
Band 3 (DCS	75MHz	590	700	515
1800)		(UL:1725.8MHz/	(UL:1747.8MHz/	(UL:1710.8MHz/
		DL:1820.8MHz)	DL:1842.8MHz)	DL:1805.8MHz)

4.1.2.2 Default Configuration

If not explicitly specified in the test case prose, the following Cell Configuration parameters shall be used for NR cells in the test cases

Table 4-7: Default I	Parameters
----------------------	------------

Parameters	Value	Note
МСС	460	
MNC	00	
NR Frame Structure for n41	Uplink-Downlink Switch Period: 5ms ^{Note}	DD DD DD DS UU
NR Frame Structure for n79	Uplink-Downlink Switch Period: 2.5 ms	DSUUU DSUUU
	Uplink-Downlink Switch Period: 2.5 ms	DDDSU DDSUU
Special Frame for n41	DL : GP : UL = 6 : 4 : 4	DDDDDGGGGUUUU
Special Frame for n79	DL : GP : UL = 10 : 2 : 2	DDDDDDDDGGUU
CP Length	Normal CP	
PRACH Format	Format 0	
PRACH Period	10ms	
PUCCH Format	Format 0 / Format 1	
	Format 2 / Format 3	
SCS for n41	30kHz	
SCS for n79	30kHz	
SCS for n28	15kHz	
PBCH Period	20ms	
PDCCH Symbols	1 symbol	
PDCCH Format	Format 0_1/Format 1_1	
PDSCH DMRS	Mapping type A & Type1	
PUSCH DMRS	Mapping type A & Type1	
PUSCH Transmission	The codebook-based transmission mode	

UL Power Control	ON	
HARQ	ON	
SRS	NR SRS Switching	
UE Maximum TX Power	NSA: 26 dBm	
	SA: 26 dBm	
Waveform	Uplink : CP-OFDM	
	Downlink: CP-OFDM	

Note1. All test cases are tested on band n41 by default

Note2. Test cases on n79 band should use this configuration by default

4.1.3 USIM Parameters

Refer to clause 4.5.3 in 3GPP TS 38.508-1 for the default parameters of the test USIM except for the following parameters

Elementary File	Parameter	Value
EFIMSI	(IMSI)	460001234567890
	(HPLMN selector with Access Technology)	CMCC China (460, 00, NG-RAN),
		CMCC China (460, 00, EUTRAN),
		CMCC China (460, 00, UTRAN),
		CMCC China (460, 00, GSM),
		CMCC China (460, 02, UTRAN),
		CMCC China (460, 02, GSM),
		CMCC China (460, 07, UTRAN),
EF_{HPLMNwAcT}		CMCC China (460, 07, GSM)
К	K Value of the USIM	000102030405060708090A0B0C0D0E0F

Table 4.2.2-1: USIM Elementary	File Parameters
Table HELE II Obiti Liciticaty	ine i arameters

Note: The priority of the PLMNs in EFHPLMNwAcT follows top bottom sequence i.e. PLMN on the top has highest priority.

4.1.4 Common Procedures

Step	U – S	Message	Specific Contents
1	<	NR RRC: SYSTEM INFORMATION (BCCH)	
2	>	NR RRC: RRCSetupRequest	
3	<	NR RRC: RRCSetup	
4	>	NR RRC: RRCSetupComplete	
		5GMM: REGISTRATION REQUEST	
5	<	NR RRC: DLInformationTransfer	
		5GMM: AUTHENTICATION REQUEST	
6	>	NR RRC: ULInformationTransfer	
		5GMM: AUTHENTICATION RESPONSE	
7	<	NR RRC: DLInformationTransfer	
		5GMM: SECURITY MODE COMMAND	
8	>	NR RRC: ULInformationTransfer	
		5GMM: SECURITY MODE COMPLETE	

GTI 5G Function and Performance Test Specification v4.2 – September 2021

9	<	NR RRC: SecurityModeCommand	
10	>	NR RRC: SecurityModeComplete	
11	<	NR RRC: UECapabilityEnquiry	
12	>	NR RRC: UECapabilityInformation	
13	<	NR RRC: DLInformationTransfer	"IMS-VoPS-3GPP" is
		5GMM: REGISTRATION ACCEPT	set to 1
			Cond: UE is pre-set as
			Voice-centric
14	>	NR RRC: ULInformationTransfer	
		5GMM: REGISTRATION COMPLETE	
15	>	NR RRC: ULInformationTransfer	DNN=ims
		5GMM: UL NAS TRANSPORT	or
		5GSM: PDU SESSION ESTABLISHMENT REQUEST	DNN=cmnet
			DNN value is set to
			"ims" when UE is
			pre-set as
			Voice-centric
16	<	NR RRC: RRCReconfiguration	
		5GMM: DL NAS TRANSPORT	
		5GSM: PDU SESSION ESTABLISHMENT ACCEPT	
17	>	NR RRC: RRCReconfigurationComplete	
18	>	NR RRC: ULInformationTransfer	DNN=cmnet
		5GMM: UL NAS TRANSPORT	or
		5GSM: PDU SESSION ESTABLISHMENT REQUEST	DNN=ims
			DNN value is set to
			"ims" when UE is
			pre-set as
			Voice-centric
19	<	NR RRC: RRCReconfiguration	
		5GMM: DL NAS TRANSPORT	
		5GSM: PDU SESSION ESTABLISHMENT ACCEPT	
20	>	NR RRC: RRCReconfigurationComplete	
21	>	IMS registration completed over SA	Cond: UE is pre-set as
	<		Voice-centric
22	<	NR RRC: RRCRelease	

4.1.5 Default End Points

The point of measurement on the UE side will be either in a connected PC for terminals that support tethered mode only or inside the UE in case of a terminal that does not support tethered mode (and supports embedded mode), or in both places for UEs that support both modes. The termination on the user side will be:

- Inside the terminal in case of a handset/smart phone that can install an embedded client application. This should be considered as the default mode of testing as it provides an accurate measure of user experience.
- Alternatively, to a connected PC as tethered mode in case of a handset or data module that does not support embedded mode (lacks User Interface, no embedded application installation possible etc.).

For embedded connections (non-tethered) as in the case of embedded applications or applications running on the UE itself, the end-points are the application running on the UE and a corresponding Data Server that is adjacent to the simulated lab-based Core Network and is the default mode of connection for devices that support this mode.

For tethered connections, the UE is tethered to a laptop using the appropriate UE to PC interface Modem or Network Interface Connection (NIC) drivers as recommended by the UE manufacturer for the intended use by the end user. In most cases, a laptop with an embedded modem is considered as tethered data configuration as opposed to an embedded data configuration due to the UE to PC interface. It is important to observe that the physical layer capabilities of the UE to PC Interface Connection can limit the UE Application Layer Data Throughput performance. So, due care should be taken to ensure that the physical layer capabilities of the UE to PC Interface Connection do not affect the performance results. For tethered connections, the end-points are the application running on the PC connected to the UE and a corresponding Data Server that is adjacent to the simulated lab-based Core Network. In this case, the PC drivers (typically USB) will also play a role in the UE Application Layer throughput.

4.2 Applicability for the UE Configuration

This clause defines the types of test case applicability used in this specification. Each test case shall clearly state the applicability in the section of "Applicability"

Туре	Applicability		
1 Test cases apply to the devices supporting both SA and NSA			
2 Test cases apply to the devices supporting SA ^{Note1}			
3 Test cases apply to the devices supporting NSA ^{Note2}			
Note1: Test ca	Note1: Test cases applying to the devices supporting SA also apply to the devices supporting both SA		

Note1: Test cases applying to the devices supporting SA also apply to the devices supporting both SA and NSA

Note2: Test cases applying to the devices supporting NSA also apply to the devices supporting both SA and NSA

5 Basic Function

5.1 PLMN Selection

5.1.1 PLMN Selection, Multi-RAT Background, Select the highest priority HPLMN, Automatic Mode

5.1.1.1 Test Purpose

The priority of the PLMNs in USIM HPLMN list is 5G>E-UTRAN. Verify the UE can camp on the PLMN with highest priority and setup a PS bearer successfully. Verify the UI display is correct. Use the same PLMN as the real network.

5.1.1.2 Reference specification

3GPP TS 38.304 subclause 5.1

5.1.1.3 Applicability

This test applies to type 1 and 2 devices as described in clause 4.2.

5.1.1.4 Test conditions

```
[SS configuration]
Cell A, Cell B and Cell C are NR cells. Cell D is an E-UTRAN cell.
```

NR Cell A Cell Id=1 TAC = 1 MCC = 460 MNC = 00 Frequency Configuration = f1

NR Cell B

Cell Id=1 TAC = 1 MCC = 460 MNC = 03 Band n78 Frequency Range = 3400MHz-3500MHz

NR Cell C Cell Id=1 TAC = 1 MCC = 460 MNC = 01 Band n78 Frequency Range = 3500MHz-3600MHz

E-UTRAN Cell D Cell Id=2 TAC = 2 MCC = 460 MNC = 00 Frequency Configuration = f1 rootSequenceIndex = 0

[UE configuration] The test USIM shall be inserted. The UE is in AUTOMATIC network selection mode. UE works in SA mode.

[Initial conditions] SS NR Cell A, Cell B and Cell C are not active. E-UTRAN Cell D is not active. The test shall be performed under ideal radio conditions.

UE

UE is powered off

5.1.1.5 Test procedure

Time	Parameter	Unit	NR Cell A	NR Cell B	NR Cell C	E-UTRAN	Remark
						Cell D	
т0	SS/PBCH, SSS EPRE	dBm/SCS	-125	-125	-125	/	
	Reference Signal EPRE	dBm/15kHz	/	/	/	-125	
T1	SS/PBCH, SSS EPRE	dBm/SCS	-85	-85	-85	/	
	Reference Signal EPRE	dBm/15kHz	/	/	/	-85	
T2	SS/PBCH, SSS EPRE	dBm/SCS	-145	-85	-85	/	
	Reference Signal EPRE	dBm/15kHz	/	/	/	-85	

Table 5.1.1.5-1: Time of cell power level and parameter changes

PREAMBLE

- 1. Activate NR Cell A, NR Cell B , NR Cell C and E-UTRAN Cell D. The SS configures the transmission of the Master Information Block and starts the System Information Block broadcasting on all cells.
- 2. The SS configures the initial power according to T0 in Table 5.1.1.5-1.
- 3. The UE is powered ON.

MAIN BODY

- 4. The SS increases the TX power of Cells according to T1 in Table 5.1.1.5-1.
- 5. The UE performs Registration procedure on NR Cell A according to subclause 5.4.1 step3-18. SS releases the RRC connection. The UE transits to Idle state.
- 6. The tag on the UI indicate that UE has registered on NR network.
- 7. Deactivate NR Cell A. (Refer Table 5.1.1.5 -1: Time T2). NR Cell B and Cell C remains exist.
- 8. The UE performs TAU procedure on E-UTRAN Cell D. SS releases the RRC connection. The UE transits to Idle state
- 9. The tag on the UI indicate that UE has registered on LTE network.

POSTAMBLE

- 10. The UE is powered OFF
- 11. The UE performs MO Detach procedure on E-UTRAN Cell D.
- 12. Deactivate NR Cell B, NR Cell C and E-UTRAN Cell D.

Step			Message Sequence		Verdict
	U-S	Layer	Message	Specific Contents	
1	÷	RRC	Activate NR Cell A, NR Cell B , NR Cell C and E-UTRAN Cell D		
2			Configure the initial power according to TO in Table 5.1.1.5-1.		
3		UE	Switch On UE	AT Command	
4			Increases the TX power of Cells according to T1 in Table 5.1.1.5-1		
5	\rightarrow	RRC NAS	UE performs Registration procedure on NR Cell A according to subclause 5.4.1 step3-18.		PASS
6			The tag on the UI indicate that UE has registered on NR network.		
7			Deactivate NR Cell A. (Refer Table 5.1.1.5 -2: Time T2). NR Cell B and Cell C remains exist.		
8	\rightarrow \leftarrow	RRC NAS	UE performs TAU procedure on E-UTRAN Cell D		PASS
9			The tag on the UI indicate that UE has registered on LTE network.		
10		UE	Switch Off UE	AT Command	
	\rightarrow \leftarrow	RRC NAS	UE performs MO Detach procedure on E-UTRAN Cell D		
12			Deactivate NR Cell B, NR Cell C and E-UTRAN Cell D.		

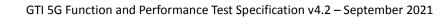
5.1.1.6 Expected Result

Step 5, UE could camps on NR Cell A Step 8, UE could camps on E-UTRAN Cell D

5.2 Cell Selection

5.2.1 Multi-mode Environment Cell Selection, NR Cell Available

5.2.1.1 Test Purpose


Verify that the UE will correctly select and camp on NR cell basend on the cell selection priority (NR > LTE).

5.2.1.2 Reference specification

3GPP TS 38.304, clause 5.2.3.

5.2.1.3 Applicability

This test applies to Type 1 and 2 devices as described in clause 4.2.

5.2.1.4 Test conditions

[SS configuration] Cell A is a E-UTRAN cell. Cell B is a NR Cell.

E-UTRAN Cell A Cell Id=01 TAC = 01 MCC-MNC = 460-00 E-UTRA Band = 41 EARFCN= f1 rootSequenceIndex TDD = 0 Reference Signal EPRE= -91dBm/15kHz upperLayerIndication-r15=true

NR Cell B

Cell Id=02 TAC = 01 MCC = 460 MNC = 00 NR Band = n41 NR-ARFCN= f1 SS/PBCH SSS EPRE = -90 dBm/30kHz

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in SA mode.

[Initial conditions]

SS

E-UTRAN Cell A is not active NR Cell B is not active The test shall be performed under ideal radio conditions.

UE

UE is powered off

5.2.1.5 Test procedure

Table 5.2.1.5-0: Time instances of cell power level and parameter changes

	Parameter	Unit	E-UTRAN Cell A	NR Cell B
то	SS/PBCH	dBm/SCS	-85	-90
	SSS EPRE	UDIII/SCS		

PREAMBLE

1. Activate E-UTRAN Cell A and NR Cell B. The SS configures the corresponding Master Information Block and System Information Block broadcast.

- 2. The SS configures the initial power according to T0 in Table 5.2.1.5-0.
- 3. The UE is powered ON.

MAIN BODY

4. The UE performs the registration procedure on Cell B (see 38.508, Table 4.5.2.2).

POSTAMBLE

- 5. The UE is powered OFF.
- 6. Deactivate E-UTRAN Cell A and NR Cell B.

Step U-	Message Sequence			Verdict	
	U-S	Layer	Message	Specific Contents	
1	÷	← RRC SS Activates E-UTRAN Cell A and Cell B			
			The SS configures the initial power		
2			according to T0 in Table 5.2.1.5-1		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	The UE performs the registration procedure		PASS
4	←	RRC	on Cell B (see 38.508, Table 4.5.2.2)		
5		UE	Switch Off UE	AT Command	
6			Deactivate E-UTRAN Cell A and NR Cell B.		

5.2.1.6 Expected Result

Step 4, UE could select NR Cell B and camps on the NR Cell B

5.2.2 Multi-mode Environment Cell Selection, E-UTRAN Available

5.2.2.1 Test Purpose

Verify that the UE will correctly select and camp on E-UTRAN cell when E-UTRAN cell available but no NR cell available.

5.2.2.2 Reference specification

3GPP TS 36.304, clause 5.2.3.

5.2.2.3 Applicability

This test applies to Type 1 and 2 devices as described in clause 4.2.

5.2.2.4 Test conditions

[SS configuration] Cell A is a TD-LTE cell.

E-UTRAN Cell A Cell Id=01 TAC = 01 MCC-MNC = 460-00 E-UTRA Band = 41 EARFCN= f1 rootSequenceIndex TDD = 0 Reference Signal EPRE= -85dBm/15kHz upperLayerIndication-r15=true

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode.

UE works in 4G mode.

[Initial conditions]

SS

E-UTRAN Cell A is not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

5.2.2.5 Test procedure

Table 5.2.2.5-1: Time instances of cell	nower level and narameter changes
	power level and parameter changes

	Parameter	Unit	E-UTRAN Cell A	
то	SS/PBCH	dDm/CCC	-85	
	SSS EPRE	dBm/SCS	-00	

PREAMBLE

- 1. Activate E-UTRAN Cell A. The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 5.2.2.5-1.
- 3. The UE is powered ON.

MAIN BODY

4. The UE performs the registration procedure with activation of the initial default EPS bearer on Cell A (see 36.508, 4.5.2).

POSTAMBLE

- 5. The UE is powered OFF.
- 6. Deactivate E-UTRAN Cell A.

Cton			Message Sequence		Verdict
Step	U-S	Layer	Message	Specific Contents	

GTI 5G Function and Performance Test Specification v4.2 – September 2021

1	←	RRC	SS Activates E-UTRAN Cell A		
2			The SS configures the initial power		
2			according to T0 in Table 5.2.2.5-1.		
2	2 UE Switch On UE		AT Command		
	\rightarrow	NAS	The UE performs the registration procedure		PASS
3	3 - RRC with activation of the initial default EPS				
			bearer on Cell A (see 36.508, 4.5.2).		
4		UE	Switch Off UE AT Command		
5			Deactivate E-UTRAN Cell A.		

5.2.2.6 Expected Result

Step 3, UE could select the E-UTRA cell A and camp on the E-UTRA cell A

5.2.3. Multi-mode Environment Cell Selection, NR Cell Available

5.2.3.1. Test Purpose

When SA NR cell and NSA PS-Cell(NR) available, UE could camps on the NR cell

5.2.3.2. Reference specification

3GPP TS 38.304, clause 5.2.3.

5.2.3.3. Applicability

This test applies to type 1 and 2 devices as described in clause 4.2.

5.2.3.4. Test conditions

[SS configuration] Cell A is a NR cell. Cell B is a NR Cell. Cell B supports NSA

NR Cell A Cell Id=01 TAC = 01 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -85 dBm/30kHz

NR Cell B Cell Id=02 TAC = 01 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -85 dBm/30kHz

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in SA mode.

[Initial conditions]

SS

UE

NR Cell A is not active NR Cell B is not active The test shall be performed under ideal radio conditions.

UE is powered off

5.2.3.5. Test procedure

Table 5.1.1.5-1: Time o	f cell power level	and parameter changes
10010 0.1.1.0 1. 11110 0	i cen power iever	und purunieter endiges

Time	Parameter	NR Cell A	NR Cell B
T0	SS/PBCH	-85	-85
	SSS EPRE		

PREAMBLE

- 1. Activate NR Cell A and Cell B. The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 5.2.3.5-1.
- 3. The UE is powered ON.

MAIN BODY

4. The UE performs the registration procedure on Cell A (see 38.508, Table 4.5.2.2). POSTAMBLE

- 5. The UE is powered OFF.
- 6. Deactivate NR Cell A and NR Cell B.

Ston	Message Sequence			Verdict	
Step	U-S	Layer	Message	Specific Contents	
1	÷	RRC	SS Activates NR Cell A and Cell B		
2			The SS configures the initial power according		
			to T0 in Table 5.2.3.5-1.		
3		UE	Switch On UE	AT Command	

Table 5.2.3.5-1: Message Sequence

4	\rightarrow	NAS	The UE performs the registration procedure		PASS
4	÷	RRC	on Cell A (see 38.508, Table 4.5.2.2).		
5		UE	Switch Off UE	AT Command	
6			Deactivate NR Cell A and NR Cell B.		

5.2.3.6. Expected Result

Step 4 UE selects the NR Cell A and camps on the Cell A.

5.2.4. Multi-mode Environment Cell Selection, NSA Cell Available

5.2.4.1. Test Purpose

Verify that the UE will correctly select and camp on NSA E-UTRAN cell when NSA E-UTRAN cell available and no NR cell

5.2.4.2. Reference specification

3GPP TS 36.304, clause 5.2.3.

5.2.4.3. Applicability

This test applies to type 1 devices as described in clause 4.2.

5.2.4.4. Test conditions

[SS configuration] Cell A is a TD-LTE cell. Cell B is a NR Cell. Cell A supports NSA.

E-UTRAN Cell A Cell Id=01 TAC = 01 MCC-MNC = 460-00 E-UTRA Band = 41 EARFCN= f1 Bandwidth = 20 MHz rootSequenceIndex TDD = 0 Reference Signal EPRE= -85dBm/15kHz upperLayerIndication-r15=true

NR Cell B Cell Id=02 TAC = 01 MCC = 460 MNC = 00

NR-ARFCN= f1 Bandwidth = 100 MHz SS/PBCH SSS EPRE = -85 dBm/30kHz

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in NSA mode.

[Initial conditions]

SS

E-UTRAN Cell A is not active NR Cell B is not active The test shall be performed under ideal radio conditions. NR Cell B is barred with cellBarred IE in MIB

UE

UE is powered off

5.2.4.5. Test procedure

Table 5.1.1.5-1: Time of cell power level and parameter changes

Time	Parameter	E-UTRAN Cell A	NR Cell B
Т0	SS/PBCH	-85	-85
	SSS EPRE		

PREAMBLE

- 1. Activate E-UTRAN Cell A and Cell B. The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 5.2.4.5-1.
- 3. The UE is powered ON.

MAIN BODY

4. The UE performs the registration procedure with activation of the initial default EPS bearer on Cell A (see 36.508, 4.5.2).

POSTAMBLE

- 5. The UE is powered OFF.
- 6. Deactivate E-UTRAN Cell A and NR Cell B.

Table 5.2.4.5-1: Message Sequence

Step			Message Sequence		Verdict
	U-S	Layer	Message	Specific Contents	
1	÷	RRC	SS Activates E-UTRAN Cell A and Cell B		
2	The SS configures the initial power according				
2			to T0 in Table 5.2.4.5-1		
3		UE	Switch On UE	AT Command	
	\rightarrow	NAS	The UE performs the registration procedure		PASS
4	÷	RRC	with activation of the initial default EPS		
			bearer on Cell A (see 36.508, 4.5.2).		
5		UE	Switch Off UE	AT Command	
6			Deactivate E-UTRAN Cell A and NR Cell B.		

5.2.4.6. Expected Result

Step 4 UE selects the E-UTRAN Cell A and camps on the Cell A.

5.2.5 Initial Cell Selection from Power-Up

5.2.5.1 Test Purpose

Verify that the UE will correctly select and camp on the right NR cell based on channel quality from power-up when inter-frequency cells with different bandwidth and inter-band cell existing simultaneously.

5.2.5.2 Reference specification

3GPP TS 38.304, clause 5.2.3.

5.2.5.3 Applicability

This test applies to type 1 and 2 devices as described in clause 4.2.

5.2.5.4 Test conditions

[SS configuration] Cell A is a NR Serving Cell, Cell B and Cell C are inter-frequency cell and Cell D is inter-band cell.

NR Cell A Cell Id=01 TAC = 01 MCC = 460 MNC = 00 Band=n41 NR-ARFCN= f4

NR Cell B Cell Id=02 TAC = 01 MCC = 460 MNC = 00

Band=n41 NR-ARFCN= f3 NR Cell C Cell Id=03 TAC = 01 MCC = 460 MNC = 00 Band=n41 NR-ARFCN= f2 NR Cell D Cell Id=04 TAC = 01 MCC = 460 MNC = 00 Band=n79 NR-ARFCN= f1 [UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode.

UE works in SA mode.

[Initial conditions]

SS

NR Cell A is not active The test shall be performed under ideal radio conditions.

UE

UE is powered off

5.2.5.5 Test procedure

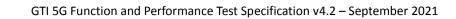
	Parameter	Unit	Cell A	Cell B	Cell C	Cell D
то			-88	-94	-94	-94
T1	SS/PBCH	dDm /CCC	-94	-88	-94	-94
T2	SSS EPRE	dBm/SCS	-94	-94	-88	-94
Т3			-94	-94	-88	-94

PREAMBLE

- 1. Activate NR CellA,NR CellB,NR CellC,NR CellD. The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 5.2.5.5-0.

MAIN BODY

- 3. The UE is powered ON.
- 4. The UE performs the registration procedure on Cell A (see 38.508, Table 4.5.2.2).
- 5. The UE is powered OFF.


- 6. The SS configures the initial power according to T1 in Table 5.2.5.5-0.
- 7. The UE is powered ON.
- 8. The UE performs the registration procedure on Cell B (see 38.508, Table 4.5.2.2).
- 9. The UE is powered OFF.
- 10. The SS configures the initial power according to T2 in Table 5.2.5.5-0.
- 11. The UE is powered ON.
- 12. The UE performs the registration procedure on Cell C (see 38.508, Table 4.5.2.2).
- 13. The UE is powered OFF.
- 14. The SS configures the initial power according to T2 in Table 5.2.5.5-0.
- 15. The UE is powered ON.
- 16. The UE performs the registration procedure on Cell D (see 38.508, Table 4.5.2.2).

POSTAMBLE

- 17. The UE is powered OFF.
- 18. Deactivate NR CellA,NR CellB,NR CellC,NR CellD.

-			Table 5.2.5.5-1. Message Sequence		r
Step			Message Sequence		Verdict
Step	U-S	Layer	Message	Specific Contents	
1		RRC	Activate NR Cell A,NR Cell B,NR Cell C,NR Cell D		
2		SS	The SS configures the initial power according to		
			T0 in Table 5.2.5.5-0.		
3		UE	Switch On UE	AT Command	
Λ	\rightarrow	NAS	The UE performs the registration procedure on		PASS
4	←	RRC	Cell A (see 38.508, Table 4.5.2.2)		
5		UE	Switch Off UE	AT Command	
6		SS	The SS configures the initial power according to		
			T1 in Table 5.2.5.5-0.		
7		UE	Switch On UE	AT Command	
8	\rightarrow	NAS	The UE performs the registration procedure on		PASS
	←	RRC	Cell B (see 38.508, Table 4.5.2.2)		
10		SS	The SS configures the initial power according to T2 in		
			Table 5.2.5.5-0.		
11		UE	Switch On UE	AT Command	
12	\rightarrow	NAS	The UE performs the registration procedure on		PASS
	←	RRC	Cell C (see 38.508, Table 4.5.2.2)		
13		UE	Switch Off UE	AT Command	
14		SS	The SS configures the initial power according to T2 in		
			Table 5.2.5.5-0.		
15		UE	Switch On UE	AT Command	
16	\rightarrow	NAS	The UE performs the registration procedure on		PASS
	÷	RRC	Cell D (see 38.508, Table 4.5.2.2)		
17		UE	Switch Off UE	AT Command	
18			Deactivate NR CellA,NR CellB,NR CellC,NR CellD.		

Table 5.2.5.5-1: Message Sequence

5.2.5.6 Expected Result

GTI

Step 4, UE could select NR Cell A and camp on the NR Cell A Step 8, UE could select NR Cell C and camps on the NR Cell B Step 12, UE could select NR Cell A and camp on the NR Cell C Step 16, UE could select NR Cell C and camps on the NR Cell D

5.3 RRC connection/connection reconfiguration

5.3.1 RRC connection re-establishment, radio link failure, re-establish to a Prepared Inter-Freq cell

5.3.1.1 Test Purpose

When UE in RRC_CONNECTED state, verify that UE could re-establish the RRC connection on the prepared Inter-Freq cell.

5.3.1.2 Reference specification

3GPP TS 38.331 clauses 5.3.7, 5.3.10 3GPP TS 38.304 clause 5.2.3

5.3.1.3 Applicability

This test applies to Type 1 and 2 devices as described in clause 4.2

5.3.1.4 Test conditions

[SS configuration] Cell A is a NR cell. Cell B is a NR Cell.

NR Cell A Cell Id=01 TAC = 01 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -85 dBm/30kHz

NR Cell B Cell Id=02 TAC = 01 MCC = 460 MNC = 00 NR-ARFCN= f2 SS/PBCH SSS EPRE = -125 dBm/30kHz

[UE configuration]

The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in SA mode.

[Initial conditions]

SS

NR Cell A is not active NR Cell B is not active The test shall be performed under ideal radio conditions.

UE

UE is powered off

5.3.1.5 Test procedure

Table F 2 1 F Or Time	instances of	coll nowor	loval and	naramatar changes
Table 5.3.1.5-0: Time	instances of	cell power	level allu	parameter changes

	Parameter	Unit	Cell A	Cell B	
то	SS/PBCH	dDm /SCS	-88	Not Activo	
то	SSS EPRE	dBm/SCS	-00	Not Active	
т1	SS/PBCH	dBm/SCS	Not Active	-88	
11	SSS EPRE	ubiii/SCS	NOT ACTIVE	-00	

PREAMBLE

- 1. Activate NR CellA,NR CellB. The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 5.3.1.5-0.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure on Cell A (see 38.508, Table 4.5.2.2 till Step 18).

MAIN BODY

- 5. The SS configures the initial power according to T1 in Table 5.3.1.5-0.
- 6. Verify that UE sends RRCReestablishmentRequest message on NR cell B.
- 7. SS sends RRCReestablishment to UE on NR cell B.
- 8. UE sends RRCReestablishmentComplete message to SS on NR cell B.

POSTAMBLE

- 9. The UE is powered OFF.
- 10. Deactivate NR CellA, NR CellB.

Ston			Message Sequence		Verdict
Step U-S Layer Me		Message	Specific Contents		
1	÷	RRC	Activate NR CellA,NR CellB.		
2		SS	The SS configures the initial power		
			according to T0 in Table 5.3.1.5-0.		

Table 5.3.1.5-1: Message Sequence

GTI 5G Function and Performance Test Specification v4.2 – September 2021

3		UE	The UE is powered ON.	AT Command	
	\rightarrow	NAS	The UE performs the registration		PASS
4	÷	RRC	procedure on Cell A (see 38.508, Table		
			4.5.2.2 till Step 18)		
5		SS	The SS configures the initial power		
5			according to T1 in Table 5.3.1.5-0.		
	\rightarrow	RRC	Verify that UE sends		PASS
6			RRCReestablishmentRequest message on		
			NR cell B		
7	÷	RRC	SS sends RRCReestablishment to UE on		
/			NR cell B.		
8	\rightarrow	RRC	UE sends RRCReestablishment-		
0			Complete message to SS on NR cell B		
9		UE	The UE is powered OFF.	AT Command	
10			Deactivate NR CellA,NR CellB.		

5.3.1.6 Expected Result

Step 4, UE could select NR Cell A and camp on the NR Cell A Step 6, UE sends RRCReestablishmentRequest message on NR cell B

5.3.2 BWP configuration, downlink and uplink BWP addition /release

5.3.2.1 Test Purpose

When UE in RRC_CONNECTED state, verify that UE could add and release downlink and uplink BWP correctly.

5.3.2.2 Reference specification

3GPP TS 38.331 clause 5.3.5.

5.3.2.3 Applicability

This test applies to the device that supports SA or SA+NSA

5.3.2.4 Test conditions

[SS configuration] Cell A is a NR cell.

NR Cell A Cell Id=01 TAC = 01 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -85 dBm/30kHz

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in SA mode.

[Initial conditions]

SS

NR Cell A is not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

5.3.2.5 Test procedure

Table 5.3.2.5-0: Time instances of cell power level and parameter changes

	Parameter	Unit	Cell A	
то	SS/PBCH	dBm/SCS	QE	
	SSS EPRE	UBIII/SCS	-85	

PREAMBLE

- 1. Activate NR CellA The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 5.3.2.5-0.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure on Cell A (see 38.508, Table 4.5.2.2 till Step 18).

MAIN BODY

- 5. Verify the data transmission is performed successfully by using BWP-ID = 0 on Cell A.
- 6. SS sends RRCReconfiguration message to add a UL BWP and DL BWP(BWP-ID=1).
- 7. UE sends RRCReconfigurationComplete message to SS on NR cell A.
- 8. Verify the data transmission with the new BWP is performed successfully on Cell A.
- 9. SS sends RRCReconfiguration message to delete a UL BWP and DL BWP(BWP-ID=1).
- 10. UE sends RRCReconfigurationComplete message to SS on NR cell A.
- 11. Verify the data transmission is performed successfully by using BWP-ID = 0 on Cell A.

POSTAMBLE

- 12. The SS initiates a Detach procedure.
- 13. The SS initiates a RRC release procedure.
- 14. Deactivate NR Cell A.

	Message Sequence				Verdict
Step		Lavor	Massaga	Specific	
	U-S	U-S Layer Message	Message	Contents	

Table 5.3.2.5-1: Message Sequence

					1
1	\	RRC	Activate NR CellA		
2			The SS configures the initial power according		
			to T0 in Table 5.3.2.5-0		
3		UE	The UE is powered ON.	AT Command	
4	\rightarrow	NAS	The UE performs the registration procedure		PASS
	÷	RRC	on Cell A (see 38.508, Table 4.5.2.2 till Step		
			18)		
5			Verify the data transmission is performed		
			successfully by using BWP-ID = 0 on Cell A.		
6	÷		SS sends RRCReconfiguration message to add		
			a UL BWP and DL BWP(BWP-ID=1). Refer to		
			Table 5.3.2.5-2 and Table 5.3.2.5-3 for BWP		
			parameters		
7	\rightarrow		UE sends RRCReconfigurationComplete		PASS
			message to SS on NR cell A.		
8			Verify the data transmission with the new		
			BWP is performed successfully on Cell A.		
9	÷		SS sends RRCReconfiguration message to		
			delete a UL BWP and DL BWP(BWP-ID=1)		
			Refer to Table 5.3.2.5-4 for BWP parameters		
10	\rightarrow		UE sends RRCReconfigurationComplete		PASS
			message to SS on NR cell A.		
11			Verify the data transmission is performed		
			successfully by using BWP-ID = 0 on Cell A.		
12	÷		The SS initiates a Detach procedure.		
13	÷		The SS initiates a RRC release procedure.		
14			Deactivate NR Cell A.		
L		•	1	1	

Table 5.3.2-2: BWP configuration

Derivation Path: TS 38.508-1 [4], Table 4.6.3-167			
Information Element	Value/remark	Comment	
ServingCellConfig ::= SEQUENCE {			
downlink BWP-ToRelease List	Not Present		
downlinkBWP-ToAddModList SEQUENCE (SIZE (1))			
OF BWP-Downlink			
BWP-Downlink [1] SEQUENCE {			
bwp-Id	1		
bwp-Common SEQUENCE {			
genericParameters	BWP	9.6.1.5-3	

}		
}		
firstActiveDownlinkBWP-Id	1	
bwp-InactivityTimer	Not present	
defaultDownlinkBWP-Id	1	
uplinkConfig SEQUENCE {		
uplinkBWP-ToReleaseList	Not Present	
uplinkBWP-ToAddModList SEQUENCE (SIZE (1))		
OF BWP-Uplink		
BWP-Uplink[1] SEQUENCE {		
bwp-Id	1	
BWP-UplinkCommon ::= SEQUENCE {		
genericParameters	BWP	5.3.2.5-3
}		
}		
firstActiveUplinkBWP-Id	1	
}		
}		

Table 9.6.1.5-3: BWP	Parameters in step 6
----------------------	----------------------

Derivation Path: TS 38.331 [6], clause 6.3.2			
Information Element	Value/remark	Comment	
BWP ::= SEQUENCE {			
locationAndBandwidth	1099	100M	
subcarrierSpacing	kHz30		
cyclicPrefix	Not present		
}			

Table 5.3.2.5-4: BWP configuration

Information Element	Value/remark	Comment
ServingCellConfig ::= SEQUENCE {		
downlinkBWP-ToReleaseList	bwp-Id =1	
downlinkBWP-ToAddModList SEQUENCE (SIZE (1))	Not present	
OF BWP-Downlink		
firstActiveDownlinkBWP-Id	0	
bwp-InactivityTimer	Not present	

defaultDownlinkBWP-Id	0
uplinkConfig SEQUENCE {	
uplinkBWP-ToReleaseList	bwp-ld =1
uplinkBWP-ToAddModList SEQUENCE (SIZE (1))	
OF BWP-Uplink	
firstActiveUplinkBWP-Id	0
}	
}	

5.3.2.6 Expected Result

Step 4, UE could select NR Cell A and camp on the NR Cell AStep 7, UE sends RRCReconfigurationComplete message on NR cell A.Step 10, UE sends RRCReconfigurationComplete message on NR cell A.

5.4 Registration/De-registration

5.4.1 Initial Registration, SA

5.4.1.1 Test Purpose

Verify the UE can register on NR Cell successfully.

5.4.1.2 Reference specification

3GPP TS 24.501, clause 5.5 3GPP TS 24.501, clause 6.4

5.4.1.3 Applicability

This test applies to type 1 and 2 devices as described in clause 4.2.

5.4.1.4 Test conditions

[SS configuration] Cell A is a NR cell.

NR Cell A Cell Id=1 TAC = 1 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -85 dBm/30kHz

[UE configuration]

The test UICC with USIM should be inserted.

The UE is in AUTOMATIC network selection mode.

UE works in SA mode.

[Initial conditions]

SS

NR Cell A is not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

5.4.1.5 Test procedure

PREAMBLE

- 1. Activate NR Cell A.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The UE is powered ON.

MAIN BODY

- 3. The UE sends an RRCConnectionRequest message.
- 4. The SS sends an RRCConnectionSetup message.
- 5. The UE sends an RRCConnectionSetupComplete message including the REGISTRATION REQUEST message to initiate the the registration procedure.
- 6. The SS sends an AUTHENTICATION REQUEST message to initiate the 5G AKA based primary authentication and key agreement procedure.
- 7. The UE sends the AUTHENTICATION RESPONSE message.
- 8. The SS sends a NAS SECURITY MODE COMMAND message to activate NAS security.
- 9. The UE sends a NAS SECURITY MODE COMPLETE message
- 10. The SS sends a SecurityModeCommand message to activate AS security.
- 11. The UE sends a SecurityModeComplete message and establishes the initial security configuration.
- 12. The SS sends a UECapabilityEnquiry message to initiate the UE radio access capability transfer procedure.
- 13. The UE sends a UECapabilityInformation message to transfer UE radio access capability.
- 14. The SS sends an REGISTRATION ACCEPT message.
- 15. The UE sends an REGISTRATION COMPLETE message.
- 16. The UE sends an PDU SESSION ESTABLISHMENT REQUEST message, verify that PDU session type is IPv4v6.
- 17. The SS sends an RRCConnectionReconfiguration message to establish the default bearer, and PDU SESSION ESTABLISHMENT ACCEPT is piggybacked.
- 18. The UE sends an RRCConnectionReconfigurationComplete message

POSTAMBLE

- 19. The UE is powered off
- 20. The UE sends a DEREGISTRATION REQUEST message.

- 21. The SS initiates a RRC release procedure.
- 22. Deactivate NR Cell A.

Step	Message Sequence			Verdict	
	U-S	Layer	Message	Specific Contents	
1	←	RRC	Activates E-UTRAN Cell A		
2		UE	Switch On UE	AT Command	
3	\rightarrow	RRC	NR RRC: RRCSetupRequest		
4	÷	RRC	NR RRC: RRCSetup		
5	\rightarrow	RRC	NR RRC: RRCSetupComplete		PASS
		NAS	5GMM: REGISTRATION REQUEST		
6	÷	RRC	NR RRC: DLInformationTransfer		
		NAS	5GMM: AUTHENTICATION REQUEST		
7	\rightarrow	RRC	NR RRC: ULInformationTransfer		PASS
		NAS	5GMM: AUTHENTICATION RESPONSE		
8	÷	RRC	NR RRC: DLInformationTransfer		
		NAS	5GMM: SECURITY MODE COMMAND		
9	\rightarrow	RRC	NR RRC: ULInformationTransfer		PASS
		NAS	5GMM: SECURITY MODE COMPLETE		
10	÷	RRC	NR RRC: SecurityModeCommand		
11	\rightarrow	RRC	NR RRC: SecurityModeComplete		PASS
12	÷	RRC	NR RRC: UECapabilityEnquiry		
13	\rightarrow	RRC	NR RRC: UECapabilityInformation		PASS
14	÷	RRC	NR RRC: DLInformationTransfer		
		NAS	5GMM: REGISTRATION ACCEPT		
15	\rightarrow	RRC	NR RRC: ULInformationTransfer		PASS
		NAS	5GMM: REGISTRATION COMPLETE		
16	\rightarrow	RRC	NR RRC: ULInformationTransfer		PASS
		NAS	5GMM: UL NAS TRANSPORT		
			5GSM: PDU SESSION ESTABLISHMENT		
			REQUEST, verify that PDU session type is		
			IPv4v6.		
17	←	RRC	NR RRC: RRCReconfiguration		
		NAS	5GMM: DL NAS TRANSPORT		
			5GSM: PDU SESSION ESTABLISHMENT		
			ACCEPT		
18	\rightarrow	RRC	NR RRC: RRCReconfigurationComplete		PASS
19		UE	Switch Off UE,	AT Command	
20	\rightarrow	NAS	UE sends a DEREGISTRATION REQUEST message.		PASS
21	÷	RRC	SS initiates a RRC release procedure.		
21	`		Deactivate NR Cell A		

Table 5.1.1.55.4.1.5-1: Message Sequence

5.4.1.6 Expected Result

Verify the UE can register on NR Cell successfully.

5.5 NSA

5.5.1 Multi-mode Environment Cell selection for NSA

5.5.1.1 Test Purpose

Verify that the UE will correctly select and camp on a LTE cell based on channel quality from power-up when LTE and NSA NR cell both exist.

5.5.1.2 Reference specification

3GPP TS 36.304, clause 5.2.3.

5.5.1.3 Applicability

This test applies to Type 1 and Type 3 devices as described in clause 4.2.

5.5.1.4 Test conditions

[SS configuration] Cell A is a E-UTRAN cell and also NSA MCG. Cell B and Cell C are 4G only cell Cell D is a NR Cell (NSA SCG, not SA NR cell).

E-UTRAN Cell A Cell Id=01 TAC = 01 MCC-MNC = 460-00 EARFCN= f1 rootSequenceIndex = 0 Reference Signal EPRE= -85 dBm/15kHz upperLayerIndication-r15=true

E-UTRAN Cell B Cell Id=02 TAC = 02 MCC-MNC = 460-00 Band = B41 EARFCN= f2 rootSequenceIndex = 0 Reference Signal EPRE= -94 dBm/15kHz upperLayerIndication-r15=false

E-UTRAN Cell C Cell Id=03 TAC = 03

MCC-MNC = 460-00 Band = B41 EARFCN= f3 rootSequenceIndex = 0 Reference Signal EPRE= -94 dBm/15kHz upperLayerIndication-r15=false

NR Cell D Cell Id=01 TAC = 01 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -94 dBm/30kHz

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in NSA mode.

[Initial conditions]

SS

E-UTRAN Cell A is not active

NR Cell B is not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

5.5.1.5 Test procedure

Table 5.5.1.5-0: Time instances of cell power level and parameter changes

	Parameter	Unit	Cell A	Cell B	Cell C	Cell D
то	SS/PBCH, SSS EPRE	dBm/SCS	/	/	/	-88
10	Reference Signal EPRE	dBm/15kHz	-88	-94	-94	/
T1	SS/PBCH, SSS EPRE	dBm/SCS	/	/	-88	-88
11	Reference Signal EPRE	dBm/15kHz	-94	-88	-94	/
тэ	SS/PBCH, SSS EPRE	dBm/SCS	/	/	-88	-88
T2 -	Reference Signal EPRE	dBm/15kHz	-94	-94	-88	/

PREAMBLE

- 1. Activate E-UTRAN Cell A, Cell B, Cell C and NR Cell D. The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 5.5.1.5-0.
- 3. The UE is powered ON.

MAIN BODY

- 4. The UE performs the registration procedure with activation of the initial default EPS bearer on Cell A (see 36.508, 4.5.2).
- 5. The SS sends an ue-CapabilityRequest including the RAT type "eutra-nr".
- 6. Verify the UE sends UECapabilityInformation message including the RAT type "eutra-nr".
- The SS sends an RRCConnectionReconfiguration message containing NR RRCReconfiguration message to add Cell D as NR PS-Cell with Split DRB. RRCConnectionReconfiguration message contains the ACTIVATE DEDICATED EPS BEARER CONTEXT REQUEST message.
- 8. The UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.
- 9. The UE sends an ULInformationTransfer message containing the ACTIVATE DEDICATED EPS BEARER CONTEXT ACCEPT message. The RRC connection is released by the SS.
- 10. The UE is powered OFF.
- 11. The SS configures the initial power according to T1 in Table 5.5.1.5-0.
- 12. The UE is powered ON. Verify that the UE performs the registration procedure on Cell B(see 38.508, Table 4.5.2.2).
- 13. The UE is powered OFF.
- 14. The SS configures the initial power according to T2 in Table 5.5.1.5-0.
- 15. The UE is powered ON. Verify that the UE performs the registration procedure on Cell C(see 38.508, Table 4.5.2.2).

POSTAMBLE

- 16. The SS initiates a paging preocedure to establish RRC connection for DETACH.
- 17. The SS initiates a MT Detach procedure.
- 18. The SS initiates a RRC release procedure.
- 19. Deactivate E-UTRAN Cell A , Cell B, Cell C and NR Cell D.

Step			Message Sequence		Verdict
	U-S	Layer	Message	Specific Contents	
1	÷	RRC	SS Activates E-UTRAN Cell A , Cell B and Cell C		
			and NR Cell B		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure with		PASS
	÷	RRC	activation of the initial default EPS bearer on		
			Cell A (see 36.508, 4.5.2).		
5	÷	RRC	ue-CapabilityRequest including the RAT type		
			"eutra-nr".		
6	\rightarrow	RRC	UECapabilityInformation including the RAT		PASS
			type "eutra-nr".		
7	÷	NAS	RRCConnectionReconfiguration containing NR		
		RRC	RRCReconfiguration to add Cell D as NR PS-Cell		
			with Split DRB.		
			RRCConnectionReconfiguration contains the		
			ACTIVATE DEDICATED EPS BEARER CONTEXT		

Table 5.1.1.5-1: Message Sequence

			REQUEST message.	
8	\rightarrow	RRC	RRCConnectionReconfigurationComplete	PASS
0	~	RRC		PASS
			containing NR RRCReconfigurationComplete.	
9	\rightarrow	RRC	ULInformationTransfer containing the	PASS
			ACTIVATE DEDICATED EPS BEARER CONTEXT	
			ACCEPT message	
10			The UE is powered OFF.	
11			The SS configures the initial power according	
			to T1 in Table 5.5.1.5-0.	
12	\rightarrow	NAS	The UE is powered ON and performs the	PASS
	←	RRC	registration procedure on Cell B(see 38.508,	
			Table 4.5.2.2).	
13			The UE is powered OFF.	
14			The SS configures the initial power according	
			to T1 in Table 5.5.1.5-0.	
15	\rightarrow	NAS	The UE is powered ON and performs the	PASS
	←	RRC	registration procedure on Cell C(see 38.508,	
			Table 4.5.2.2).	
16	\rightarrow	RRC	SS initiates a paging preocedure to establish	
	÷		RRC connection for DETACH.	
17	\rightarrow	NAS	SS initiates a MT Detach procedure.	
	÷			
18	÷	RRC	SS initiates a RRC release procedure.	
19			Deactivate E-UTRAN Cell A and NR Cell B	

5.5.1.6 Expected Result

Step 4, UE could correctly select and camp on the E-UTRAN cell A
Step 6, UE could correctly report its EN-DC capability
Step 8 and 9, UE could support the establishment of NSA SCG.
Step 12, UE could correctly select and camp on the E-UTRAN cell B
Step 15, UE could correctly select and camp on the E-UTRAN cell C

5.5.2 Initial Registration, NSA

5.5.2.1 Test Purpose

Verify the UE can support NSA, and the data transmission can be performed successfully on PS-Cell after adding PS-Cell .

5.5.2.2 Reference specification

3GPP TS 38.331, clause 5.3.5

5.5.2.3 Applicability

This test applies to Type 1 and Type 3 devices as described in clause 4.2.

5.5.2.4 Test conditions

[SS configuration] Cell A is a E-UTRAN cell. Cell B is a NR Cell.

E-UTRAN Cell A Cell Id=01 TAC = 01 MCC-MNC = 460-00 EARFCN= f1 rootSequenceIndex = 0 Reference Signal EPRE= -85 dBm/15kHz upperLayerIndication-r15=true

NR Cell B

Cell Id=02 TAC = 01 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -94 dBm/30kHz

[UE configuration] The test UICC with USIM should be inserted. The UE is in AUTOMATIC network selection mode. UE works in NSA mode.

[Initial conditions]

SS

E-UTRAN Cell A is not active NR Cell B is not active The test shall be performed under ideal radio conditions.

UE

UE is powered off

5.5.2.5 Test procedure

PREAMBLE

- 1. Activate E-UTRAN Cell A and Cell B.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The UE is powered ON.

MAIN BODY

3. The UE performs the registration procedure with activation of the initial default EPS bearer on Cell A (see 36.508, 4.5.2).

- 4. The SS sends an ue-CapabilityRequest including the RAT type "eutra-nr".
- 5. Verify the UE sends UECapabilityInformation message including the RAT type "eutra-nr".
- 6. Verify the data transmission is performed successfully on Cell A.
- 7. The SS sends an RRCConnectionReconfiguration message containing NR RRCReconfiguration message to add Cell B as NR PS-Cell with Split DRB. RRCConnectionReconfiguration message contains the ACTIVATE DEDICATED EPS BEARER CONTEXT REQUEST message.
- 8. The UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.
- 9. The UE sends an ULInformationTransfer message containing the ACTIVATE DEDICATED EPS BEARER CONTEXT ACCEPT message.
- 10. Verify the downlink data transmission is performed successfully on Cell B.
- 11. Verify the uplink data transmission is performed successfully on Cell B.

POSTAMBLE

- 12. The SS initiates a Detach procedure.
- 13. The SS initiates a RRC release procedure.
- 14. Deactivate E-UTRAN Cell A and NR Cell B.

Step	Message Sequence				
	U-S	Layer	Message	Specific Contents	
1	÷	RRC	SS Activates E-UTRAN Cell A and Cell B		
2		UE	Switch On UE	AT Command	
3	\rightarrow	NAS	UE performs the registration procedure with		PASS
	←	RRC	activation of the initial default EPS bearer on		
			Cell A (see 36.508, 4.5.2)		
4	÷	RRC	The SS sends an ue-CapabilityRequest including		
			the RAT type "eutra-nr".		
5	\rightarrow	RRC	Verify the UE sends UECapabilityInformation		PASS
			message including the RAT type "eutra-nr".		
6			Verify the data transmission is performed		PASS
			successfully on Cell A.		
7	÷	NAS	The SS sends an RRCConnectionReconfiguration		
		RRC	message containing NR RRCReconfiguration		
			message to add Cell B as NR PS-Cell with Split		
			DRB. RRCConnectionReconfiguration message		
			contains the ACTIVATE DEDICATED EPS BEARER		
			CONTEXT REQUEST message.		
8	\rightarrow	RRC	UE sends an		PASS
			RRCConnectionReconfigurationComplete		
			message containing NR		
			RRCReconfigurationComplete message.		
9	\rightarrow	RRC	UE sends an ULInformationTransfer message		PASS

Table 5.5.2.5-1: Message Sequence

			containing the ACTIVATE DEDICATED EPS	
			BEARER CONTEXT ACCEPT message	
10			Verify the downlink data transmission is	
			performed successfully on Cell B.	
11			Verify the uplink data transmission is performed	
			successfully on Cell B.	
12	\rightarrow	NAS	SS initiates a Detach procedure.	PASS
	÷			
13	÷	RRC	SS initiates a RRC release procedure.	
14			Deactivate E-UTRAN Cell A and NR Cell B.	

• Expected Result

Verify the UE can support NSA, and the data transmission can be performed successfully on PS-Cell after adding PS-Cell.

5.5.3 Bandwidth Part Configuration, SCG, EN-DC

5.5.3.1 Test Purpose

When UE in RRC_CONNECTED state with EN-DC, and, MCG (E-UTRA PDCP) and SCG, verify when UE receives an RRCConnectionReconfiguration message to configure a BandwidthPart for SCG, UE configures BandwidthPart for SCG and sends an RRCConnectionReconfigurationComplete message.

5.5.3.2 Reference specification

3GPP TS 38.331, clause 5.3.5

5.5.3.3 Applicability

This test applies to type 1 and 3 devices as described in clause 4.2.

5.5.3.4 Test conditions

[SS configuration] Cell A is a E-UTRAN cell. Cell B is a NR Cell.

E-UTRAN Cell A Cell Id=01 TAC = 01 MCC-MNC = 460-00 EARFCN= f1 rootSequenceIndex = 0 Reference Signal EPRE= -85 dBm/15kHz upperLayerIndication-r15=true

NR Cell B Cell Id=02 TAC = 01

MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -94 dBm/30kHz

[UE configuration] The test UICC with USIM should be inserted. The UE is in AUTOMATIC network selection mode. UE works in NSA mode.

[Initial conditions]

SS

E-UTRAN Cell A is not active NR Cell B is not active The test shall be performed under ideal radio conditions.

UE

UE is powered off

5.5.3.5 Test procedure

PREAMBLE

- 1. Activate E-UTRAN Cell A and NR Cell B.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The UE is powered ON.

MAIN BODY

- 3. The UE performs the registration procedure with activation of the initial default EPS bearer on Cell A (see 36.508, 4.5.2).
- 4. The SS sends an ue-CapabilityRequest including the RAT type "eutra-nr".
- 5. Verify the UE sends UECapabilityInformation message including the RAT type "eutra-nr".
- 6. The SS sends an RRCConnectionReconfiguration message containing NR RRCReconfiguration message to add Cell B as NR PS-Cell with Split DRB. RRCConnectionReconfiguration message contains the ACTIVATE DEDICATED EPS BEARER CONTEXT REQUEST message.
- 7. The UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.
- 8. The UE sends an ULInformationTransfer message containing the ACTIVATE DEDICATED EPS BEARER CONTEXT ACCEPT message.
- 9. Verify the data transmission is performed successfully by using BWP-ID = 0 on Cell B.
- 10. The SS sends an RRCConnectionReconfiguration message containing NR RRCReconfiguration message to add a UL BWP and DL BWP(BWP-ID=1).
- 11. The UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.
- 12. Switch to the new BWP(BWP-ID=1).
- 13. Verify the data transmission with the new BWP is performed successfully on Cell B.
- 14. The SS sends an RRCConnectionReconfiguration message containing NR RRCReconfiguration

message to delete a UL BWP and DL BWP(BWP-ID=1).

- 15. The UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.
- 16. Verify the data transmission is performed successfully by using BWP-ID = 0 on Cell B.

POSTAMBLE

- 17. The SS initiates a Detach procedure.
- 18. The SS initiates a RRC release procedure.
- 19. Deactivate E-UTRAN Cell A and NR Cell B.

Step	Message Sequence				
	U-S	Layer	Message	Specific Contents	
1	÷	RRC	SS Activates E-UTRAN Cell A and Cell B		
2		UE	Switch On UE	AT Command	
3	\rightarrow	NAS	UE performs the registration procedure with		PASS
	←	RRC	activation of the initial default EPS bearer on		
			Cell A (see 36.508, 4.5.2)		
4	÷	RRC	The SS sends an ue-CapabilityRequest		
			including the RAT type "eutra-nr".		
5	\rightarrow	RRC	Verify the UE sends UECapabilityInformation		PASS
			message including the RAT type "eutra-nr".		
6	÷	NAS	The SS sends an		
		RRC	RRCConnectionReconfiguration message		
			containing NR RRCReconfiguration message		
			to add Cell B as NR PS-Cell with Split DRB.		
			RRCConnectionReconfiguration message		
			contains the ACTIVATE DEDICATED EPS		
			BEARER CONTEXT REQUEST message.		
7	\rightarrow	RRC	UE sends an		PASS
			RRCConnectionReconfigurationComplete		
			message containing NR		
			RRCReconfigurationComplete message.		
8	\rightarrow	RRC	UE sends an ULInformationTransfer message		PASS
			containing the ACTIVATE DEDICATED EPS		
			BEARER CONTEXT ACCEPT message		
9			Verify the data transmission is performed		PASS
			successfully on Cell B.		
10	←	RRC	SS sends an RRCConnectionReconfiguration		
			message containing NR RRCReconfiguration		
			message to add a UL BWP and DL		
			BWP(BWP-Id=1).		
11	\rightarrow	RRC	UE sends an		PASS

Table 5.1.1.5-1: Message Sequence

		1	Г	I
			RRCConnectionReconfigurationComplete	
			message containing NR	
			RRCReconfigurationComplete message.	
12			Switch to the new BWP(BWP-Id=1).	
13			Verify the data transmission with the new	PASS
			BWP is performed successfully on Cell B.	
14	÷	RRC	SS sends an RRCConnectionReconfiguration	
			message containing NR RRCReconfiguration	
			message to delete a UL BWP and DL	
			BWP(BWP-Id=1).	
15	\rightarrow	RRC	UE sends an	PASS
			RRCConnectionReconfigurationComplete	
			message containing NR	
			RRCReconfigurationComplete message.	
16			Verify the data transmission is performed	
			successfully on Cell B as previous	
			BWP((BWP-Id=0).	
17	\rightarrow	NAS	SS initiates a Detach procedure.	PASS
	←			
18	÷	RRC	SS initiates a RRC release procedure.	
19			Deactivate E-UTRAN Cell A and NR Cell B	

5.5.3.6 Expected Result

Verify the UE can add UL BWP and DL BWP(BWP-Id=1) successfully. Verify the data transmission with the new BWP(BWP-Id=1) is performed successfully. Verify the UE can delete UL BWP and DL BWP(BWP-Id=1) successfully.

5.5.4 NSA-RLF

5.5.4.1 Radio Link Failure in LTE P-Cell

5.5.4.1.1 Test Purpose

When UE enters RLF condition while connected in EN-DC mode, verify whether it can reestablish in same P-Cell and enter again to EN-DC connected mode with Data Continuity.

5.5.4.1.2 Reference specification

TS 38.304, TS 38.331, TS 38.300, TS 36.331

5.5.4.1.3 Applicability

This test applies to the device that supports NSA or SA+NSA.

5.5.4.1.4 Test conditions

[SS configuration] Cell A is E-UTRAN Cell, CellB is a NR Cell. Cell A supports NSA

E-UTRAN Cell A

GT

Cell Id=01 TAC = 01 MCC-MNC = 460-00 E-UTRA Band = 39 EARFCN= f1 Bandwidth = 20 MHz rootSequenceIndex TDD = 0 Reference Signal EPRE= -85 dBm/15kHz upperLayerIndication-r15=true

NR Cell B

Cell Id=02 TAC = 01 MCC = 460 MNC = 00 NR Band = n41 NR-ARFCN= f1 Bandwidth = 100 MHz SS/PBCH SSS EPRE = -125 dBm/30kHz

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in SA mode.

[Initial conditions]

SS

E-UTRAN Cell A is not active NR Cell B is not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

5.5.4.1.5 Test procedure

Table 5.5.4.1.5-1: Time of cell power level and parameter changes	
---	--

Time	E-UTRAN Cell A	NR Cell B	Remark
то	-85	-90	
T1	-145	-90	Condition RLF in EUTRAN Cell A
T2	-85	-90	

PREAMBLE

- 1. Activate E-UTRAN Cell A, NR Cell B.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 5.5.4.1.5-1.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure with activation of the initial default EPS bearer on Cell A (see 36.508, 4.5.2).
- 5. The SS sends an ue-CapabilityRequest including the RAT type "eutra-nr".
- 6. Verify the UE sends UECapabilityInformation message including the RAT type "eutra-nr".
- 7. The SS sends an RRCConnectionReconfiguration message containing NR RRCReconfiguration message to add Cell B as NR PS-Cell with Split DRB.
- 8. The UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.
- 9. Verify that Data tranfer(Ping) performed on both EUTRAN Cell A and NR cell B

MAIN BODY

- 10. The SS configures the power level of the cells according to T1 in Table 5.5.4.1.5-1
- 11. Wait for T310 Expiry and SS configures the power level of the cells according to T2 in Table 5.5.4.1.5-1
- 12. Verify that UE initiates the RRC Connection Reestablishment request and completes the Reestablishment procedures
- 13. Verify that Data transfer(Ping) continued in EUTRAN cell A after reestablishment procedure
- 14. The SS sends an RRCConnectionReconfiguration message containing NR RRCReconfiguration message to add Cell B as NR PS-Cell.
- 15. The UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.
- 16. Verify that Data tranfer(Ping) continued on both EUTRAN Cell A and NR cell B

POSTAMBLE

- 17. The SS initiates a Detach procedure.
- 18. The SS initiates a RRC release procedure.
- 19. Deactivate E-UTRAN Cell A and NR Cell B.

Step		Message Sequence			
	U-S	Layer	Message	Specific Contents	
			Connect the power consumption tester to		
			the UE		
1	÷	RRC	Activate E-UTRAN Cell A and NR Cell B.		
2			SS configures the initial power according to		
			T0 in Table 5.5.4.1.5-1		

Table 5.1.1.5-2: Message Sequence

3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure with		PASS
-	÷	RRC	activation of the initial default EPS bearer on		17.55
		inte	Cell A (see 36.508, 4.5.2).		
5	\	RRC	The SS sends an ue-CapabilityRequest		
5		inic	including the RAT type "eutra-nr".		
6	\rightarrow	RRC	Verify the UE sends UECapabilityInformation		PASS
0		NINC .	message including the RAT type "eutra-nr".		FA33
7	←	NAS	SS sends an RRCConnectionReconfiguration		
,		RRC	message containing NR RRCReconfiguration		
		nne	message to add Cell B as NR PS-Cell with Split		
			DRB.		
8	\rightarrow	RRC			PASS
0		RRC .			PASS
			RRCConnectionReconfigurationComplete		
			message containing NR RRCReconfigurationComplete message.		
9			Verify the data transmission is performed		PASS
9					FASS
			successfully on both EUTRAN Cell A and NR Cell B.		
10			SS configures the cell power according to T1		
10			in Table 5.5.4.1.5-1		
11			Wait for T310 Expiry and SS configures the		
11			cell power according to T2 in Table		
			5.5.4.1.5-1		
12	\rightarrow	RRC	UE sends RRC Connection Reestablishment		PASS
12		inic	Request		1733
13	←	RRC	SS sends RRC Connection Reestablishment to		
15		inte	the UE		
14	\rightarrow	RRC	Verify that UE sends RRC Connection		PASS
14		line	Reestablishment complete		17.55
15			Verify that Data transfer(Ping) continued in		
15			EUTRAN cell A after reestablishment		
			procedure		
16	\	NAS	SS sends an RRCConnectionReconfiguration		
10		RRC	message containing NR RRCReconfiguration		
			message to add Cell B as NR PS-Cell with Split		
			DRB.		
17	\rightarrow	RRC	UE sends an		PASS
			RRCConnectionReconfigurationComplete		
			message containing NR		
			RRCReconfigurationComplete message.		
18			Verify that Data tranfer(Ping) continued on		PASS
			both EUTRAN Cell A and NR cell		
19	\rightarrow	NAS	SS initiates a Detach procedure.		PASS
	_				

	÷			
20	÷	RRC	SS initiates a RRC release procedure.	
21			Deactivate E-UTRAN Cell A and NR Cell B.	

5.5.4.1.6 Expected Result

When RLF introduced in EN-DC cell, UE should first Reestablish in P-Cell

5.5.4.2 Radio Link Failure in NR PS-Cell - Reattaching to the same PS-Cell

5.5.4.2.1 Test Purpose

When UE enters RLF condition in PS-Cell while connected in EN-DC mode, verify whether it can detect and attach in same PS-Cell and enter again to EN-DC connected mode with Data Continuity.

5.5.4.2.2 Reference specification

TS 38.304, TS 38.331, TS 38.300, TS 36.331

5.5.4.2.3 Applicability

This test applies to the device that supports NSA or SA+NSA.

5.5.4.2.4 Test conditions

[SS configuration] Cell A is E-UTRAN Cell, CellB is a NR Cell. Cell A supports NSA

E-UTRAN Cell A Cell Id=01 TAC = 01 MCC-MNC = 460-00 E-UTRA Band = 39 EARFCN= f1 Bandwidth = 20 MHz rootSequenceIndex TDD = 0 Reference Signal EPRE= -85 dBm/15kHz upperLayerIndication-r15=true

NR Cell B Cell Id=02 TAC = 01 MCC = 460 MNC = 00 NR Band = n41 NR-ARFCN= f1 Bandwidth = 100 MHz

SS/PBCH SSS EPRE = -125 dBm/30kHz

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in SA mode.

[Initial conditions]

SS

E-UTRAN Cell A is not active

NR Cell B is not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

5.5.4.2.5 Test procedure

Table 5.5.4.2.5-1: Time of cell power level and parameter changes

Time	E-UTRAN Cell A	NR Cell B	Remark
то	-85	-90	
T1	-85	-145	Condition RLF in NR Cell B
T2	-85	-90	

PREAMBLE

- 1. Activate E-UTRAN Cell A, NR Cell B.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 5.5.4.2.5-1.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure with activation of the initial default EPS bearer on Cell A (see 36.508, 4.5.2).
- 5. The SS sends an ue-CapabilityRequest including the RAT type "eutra-nr".
- 6. Verify the UE sends UECapabilityInformation message including the RAT type "eutra-nr".
- 7. The SS sends an RRCConnectionReconfiguration message containing NR RRCReconfiguration message to add Cell B as NR PS-Cell with Split DRB.
- 8. The UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.
- 9. Verify that Data tranfer(Ping) performed on both EUTRAN Cell A and NR cell B

MAIN BODY

10. The SS configures the power level of the cells according to T1 in Table 5.5.4.2.5-1

- 11. Verify that UE sends SCGFailureInformationNR with failure type set as 't310-expiry' after T310 seconds
- 12. The SS configures the power level of the cells according to T2 in Table 5.5.4.2.5-1
- 13. The SS sends an RRCConnectionReconfiguration message containing NR RRCReconfiguration message to add Cell B as NR PS-Cell.
- 14. The UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.
- 15. Verify that Data tranfer(Ping) performed on both EUTRAN Cell A and NR cell B

POSTAMBLE

- 16. The SS initiates a Detach procedure.
- 17. The SS initiates a RRC release procedure.
- 18. Deactivate E-UTRAN Cell A and NR Cell B.

			Table 5.1.1.5-2: Message Sequence		1
Step		I	Message Sequence	I	Verdict
	U-S	Layer	Message	Specific Contents	
			Connect the power consumption tester to		
			the UE		
1	÷	RRC	Activate E-UTRAN Cell A and NR Cell B.		
2			SS configures the initial power according to		
			T0 in Table 5.5.4.2.5-1		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure with		PASS
	←	RRC	activation of the initial default EPS bearer on		
			Cell A (see 36.508, 4.5.2).		
5	÷	RRC	The SS sends an ue-CapabilityRequest		
			including the RAT type "eutra-nr".		
6	\rightarrow	RRC	Verify the UE sends UECapabilityInformation		PASS
			message including the RAT type "eutra-nr".		
7	÷	NAS	SS sends an RRCConnectionReconfiguration		
		RRC	message containing NR RRCReconfiguration		
			message to add Cell B as NR PS-Cell with Split		
			DRB.		
8	\rightarrow	RRC	UE sends an		PASS
			RRCConnectionReconfigurationComplete		
			message containing NR		
			RRCReconfigurationComplete message.		
9			Verify the data transmission is performed		PASS
			successfully on both EUTRAN Cell A and NR		
			Cell B.		
10			SS configures the cell power according to T1		

Table 5.1.1.5-2: Message Sequence

. <u> </u>				1	-
			in Table 5.5.4.2.5-1		
11	\rightarrow	RRC	Verify that after T310 expiry, UE is sending		PASS
			SCGFailureInformationNR with failure type		
			set as 't310-expiry'		
12			SS configures the cell power according to T2		
			in Table 5.5.4.2.5-1		
13	÷	NAS	SS sends an RRCConnectionReconfiguration		
		RRC	message containing NR RRCReconfiguration		
			message to add Cell B as NR PS-Cell with Split		
			DRB.		
14	\rightarrow	RRC	UE sends an		PASS
			RRCConnectionReconfigurationComplete		
			message containing NR		
			RRCReconfigurationComplete message.		
15			Verify the data transmission is performed		PASS
			successfully on both EUTRAN Cell A and NR		
			Cell B.		
16	\rightarrow	NAS	SS initiates a Detach procedure.		PASS
	÷				
17		RRC	SS initiates a RRC release procedure.		
	←				
18			Deactivate E-UTRAN Cell A and NR Cell B.		

5.5.4.2.6 Expected Result

When RLF introduced in EN-DC PS-Cell, UE should initiate the SCGFailureInformationNR message

5.5.4.3 Radio Link Failure in NR PS-Cell – Re-attaching to different PS-Cell

5.5.4.3.1 Test Purpose

When UE enters RLF condition in PS-Cell while connected in EN-DC mode, verify whether it can detect and attach in different PS-Cell and enter again to EN-DC connected mode with Data Continuity.

5.5.4.3.2 Reference specification

TS 38.304, TS 38.331, TS 38.300, TS 36.331

5.5.4.3.3 Applicability

This test applies to the device that supports NSA or SA+NSA.

5.5.4.3.4 Test conditions

[SS configuration]

Cell A is E-UTRAN Cell, CellB &Cell C are NR Cells. Cell A supports NSA

E-UTRAN Cell A Cell Id=01 TAC = 01 MCC-MNC = 460-00 E-UTRA Band = 39 EARFCN= f1 Bandwidth = 20 MHz rootSequenceIndex TDD = 0 Reference Signal EPRE= -85 dBm/15kHz upperLayerIndication-r15=true

NR Cell B

GTI

Cell Id=02 TAC = 01 MCC = 460 MNC = 00 NR Band = n41 NR-ARFCN= f1 Bandwidth = 100 MHz SS/PBCH SSS EPRE = -125 dBm/30kHz

NR Cell C

Cell Id=03 TAC = 01 MCC = 460 MNC = 00 NR Band = n41 NR-ARFCN= f1 Bandwidth = 100 MHz SS/PBCH SSS EPRE = -125 dBm/30kHz

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in SA mode.

[Initial conditions]

SS

E-UTRAN Cell A is not active NR Cell B is not active NR Cell C is not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

5.5.4.3.5 Test procedure

Time	E-UTRAN Cell A	NR Cell B	NR Cell C	Remark
то	-85	-90	NA	
T1	-85	-145	-90	Condition RLF in NR Cell B

Table 5.5.4.3.5-1: Time of cell power level and parameter changes

PREAMBLE

- 1. Activate E-UTRAN Cell A, NR Cell B.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 5.5.4.3.5-1.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure with activation of the initial default EPS bearer on Cell A (see 36.508, 4.5.2).
- 5. The SS sends an ue-CapabilityRequest including the RAT type "eutra-nr".
- 6. Verify the UE sends UECapabilityInformation message including the RAT type "eutra-nr".
- 7. The SS sends an RRCConnectionReconfiguration message containing NR RRCReconfiguration message to add Cell B as NR PS-Cell. RRCConnectionReconfiguration message contains the ACTIVATE DEDICATED EPS BEARER CONTEXT REQUEST message
- 8. The UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.
- 9. The UE sends an ULInformationTransfer message containing the ACTIVATE DEDICATED EPS BEARER CONTEXT ACCEPT message.
- 10. Verify that Data tranfer(Ping) performed on both EUTRAN Cell A and NR cell B

MAIN BODY

- 11. The SS configures the power level of the cells according to T1 in Table 5.5.4.3.5-1
- 12. Verify that UE sends SCGFailureInformationNR with failure type set as 't310-expiry' after T310 seconds
- 13. The SS sends an RRCConnectionReconfiguration message containing NR RRCReconfiguration message to add Cell C as NR PS-Cell.
- 14. The UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.
- 15. Verify that Data tranfer(Ping) performed on both EUTRAN Cell A and NR cell C

POSTAMBLE

- 16. The SS initiates a Detach procedure.
- 17. The SS initiates a RRC release procedure.
- 18. Deactivate E-UTRAN Cell A and NR Cell B.

Step		Message Sequence					
	U-S	Layer	Message	Specific Contents			
			Connect the power consumption tester to				
			the UE				

Table 5.1.1.5-2: Message Sequence

4	/	DDC			
1	\	RRC	Activate E-UTRAN Cell A and NR Cell B.		
2			SS configures the initial power according to		
			T0 in Table 5.5.4.3.5-1		<u> </u>
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure with		PASS
	←	RRC	activation of the initial default EPS bearer on		
			Cell A (see 36.508, 4.5.2).		
5	←	RRC	The SS sends an ue-CapabilityRequest		
			including the RAT type "eutra-nr".		
6	\rightarrow	RRC	Verify the UE sends UECapabilityInformation		PASS
			message including the RAT type "eutra-nr".		
7	←	NAS	SS sends an RRCConnectionReconfiguration		
		RRC	message containing NR RRCReconfiguration		
			message to add Cell B as NR PS-Cell with Split		
			DRB. RRCConnectionReconfiguration		
			message contains the ACTIVATE DEDICATED		
			EPS BEARER CONTEXT REQUEST message.		
8	\rightarrow	RRC	UE sends an		PASS
			RRCConnectionReconfigurationComplete		
			message containing NR		
			RRCReconfigurationComplete message.		
9	\rightarrow	NAS	UE sends an ULInformationTransfer message		PASS
		RRC	containing the ACTIVATE DEDICATED EPS		
			BEARER CONTEXT ACCEPT message		
10			Verify the data transmission is performed		PASS
			successfully on both EUTRAN Cell A and NR		
			Cell B.		
11			SS configures the cell power according to T1		
			in Table 5.5.4.3.5-1		
12	\rightarrow	RRC	Verify that after T310 expiry, UE is sending		PASS
			SCGFailureInformationNR with failure type		
			set as 't310-expiry'		
13	~	NAS	SS sends an RRCConnectionReconfiguration		
		RRC	message containing NR RRCReconfiguration		
			message to add Cell C as NR PS-Cell with Split		
			DRB.		
14	\rightarrow	RRC	UE sends an		PASS
			RRCConnectionReconfigurationComplete		
			message containing NR		
			RRCReconfigurationComplete message.		
15			Verify the data transmission is performed		PASS
			successfully on both EUTRAN Cell A and NR		
			Cell B.		
16	\rightarrow	NAS	SS initiates a Detach procedure.		PASS
10		1173			17.55

	÷			
17		RRC	SS initiates a RRC release procedure.	
	÷			
18			Deactivate E-UTRAN Cell A and NR Cell C.	

5.5.4.3.6 Expected Result

When RLF introduced in EN-DC PS-Cell, UE should initiate the SCGFailureInformationNR message

5.5.4.4 Radio Link Failure Detection and Recovery in PS-Cell

5.5.4.4.1 Test Purpose

When UE enters RLF condition in PS-Cell while connected in EN-DC mode, verify whether it can detect and recover in same PS-Cell with Data Continuity.

5.5.4.4.2 Reference specification

TS 38.304, TS 38.331, TS 38.300, TS 36.331

5.5.4.4.3 Applicability

This test applies to the device that supports NSA or SA+NSA.

5.5.4.4.4 Test conditions

[SS configuration] Cell A is E-UTRAN Cell, CellB is a NR Cell. Cell A supports NSA

E-UTRAN Cell A Cell Id=01 TAC = 01 MCC-MNC = 460-00 E-UTRA Band = 39 EARFCN= f1 Bandwidth = 20 MHz rootSequenceIndex TDD = 0 Reference Signal EPRE= -85 dBm/15kHz upperLayerIndication-r15=true

NR Cell B Cell Id=02 TAC = 01 MCC = 460 MNC = 00 NR Band = n41 NR-ARFCN= f1 Bandwidth = 100 MHz

SS/PBCH SSS EPRE = -125 dBm/30kHz

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in SA mode.

[Initial conditions]

SS

E-UTRAN Cell A is not active

NR Cell B is not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

5.5.4.4.5 Test procedure

Table 5.5.4.4.5-1: Time of cell power level and parameter changes

Time	E-UTRAN Cell A	NR Cell B	Remark
то	-85	-90	
T1	-85	-145	Condition RLF in NR Cell B
T2	-85	-90	

PREAMBLE

- 1. Activate E-UTRAN Cell A, NR Cell B.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 5.5.4.4.5-1.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure with activation of the initial default EPS bearer on Cell A (see 36.508, 4.5.2).
- 5. The SS sends an ue-CapabilityRequest including the RAT type "eutra-nr".
- 6. Verify the UE sends UECapabilityInformation message including the RAT type "eutra-nr".
- The SS sends an RRCConnectionReconfiguration message containing NR RRCReconfiguration message to add Cell B as NR PS-Cell. RRCConnectionReconfiguration message contains the ACTIVATE DEDICATED EPS BEARER CONTEXT REQUEST message.
- 8. The UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.
- 9. UE sends an ULInformationTransfer message containing the ACTIVATE DEDICATED EPS BEARER CONTEXT ACCEPT message.
- 10. Verify that Data tranfer(Ping) performed on both EUTRAN Cell A and NR cell B

MAIN BODY

- 11. The SS configures the power level of the cells according to T1 in Table 5.5.4.4.5-1
- 12. The SS configures the power level of the cells according to T2 in Table 5.5.4.4.5-1 before T310 timer expiry
- 13. Verify that Data tranfer(Ping) continued on both EUTRAN Cell A and NR cell B

POSTAMBLE

- 14. The SS initiates a Detach procedure.
- 15. The SS initiates a RRC release procedure.
- 16. Deactivate E-UTRAN Cell A and NR Cell B.

Step	Message Sequence					
	U-S	Layer	Message	Specific Contents		
			Connect the power consumption tester to			
			the UE			
1	←	RRC	Activate E-UTRAN Cell A and NR Cell B.			
2			SS configures the initial power according to			
			T0 in Table 5.5.4.4.5-1			
3		UE	Switch On UE	AT Command		
4	\rightarrow	NAS	UE performs the registration procedure with		PASS	
	÷	RRC	activation of the initial default EPS bearer on			
			Cell A (see 36.508, 4.5.2).			
5	←	RRC	The SS sends an ue-CapabilityRequest			
			including the RAT type "eutra-nr".			
6	\rightarrow	RRC	Verify the UE sends UECapabilityInformation		PASS	
			message including the RAT type "eutra-nr".			
7	←	NAS	SS sends an RRCConnectionReconfiguration			
		RRC	message containing NR RRCReconfiguration			
			message to add Cell B as NR PS-Cell with Split			
			DRB. RRCConnectionReconfiguration			
			message contains the ACTIVATE DEDICATED			
			EPS BEARER CONTEXT REQUEST message.			
8	\rightarrow	RRC	UE sends an		PASS	
			RRCConnectionReconfigurationComplete			
			message containing NR			
			RRCReconfigurationComplete message.			
9	\rightarrow	NAS	UE sends an ULInformationTransfer message		PASS	
		RRC	containing the ACTIVATE DEDICATED EPS			
			BEARER CONTEXT ACCEPT message			
10			Verify the data transmission is performed		PASS	
			successfully on both EUTRAN Cell A and NR			

Table 5.1.1.5-2: Message Sequence

			Cell B.	
11			SS configures the cell power according to T1	
			in Table 5.5.4.4.5-1	
12			SS configures the cell power according to T2	
			in Table 5.5.4.4.5-1 before T310 expiry	
13			Verify the data transmission is continued	PASS
			successfully on both EUTRAN Cell A and NR	
			Cell B.	
14	\rightarrow	NAS	SS initiates a Detach procedure.	PASS
	←			
15		RRC	SS initiates a RRC release procedure.	
	←			
16			Deactivate E-UTRAN Cell A and NR Cell B.	

5.5.4.4.6 Expected Result

When RLF introduced and resolved before T310 expiry in EN-DC PS-Cell, UE should detect and recover from the RLF and continue the data transmission

5.6 CSI-RS Measurement

5.6.1 CSI Reporting Periodic in PUSCH

5.6.1.1 Test Purpose

Periodic CSI measurement configuration for CSI type 1 in NR cell when UE is connected to EN-DC.

5.6.1.2 Reference specification

TS 36.304, clause 5.2.4, TS 38.213, 38.331

5.6.1.3 Applicability

This test applies to the device that supports NSA or SA+NSA.

5.6.1.4 Test conditions

[SS configuration] Cell A is E-UTRAN Cell, CellB is a NR Cell. Cell A supports NSA

E-UTRAN Cell A Cell Id=01 TAC = 01 MCC-MNC = 460-00

EARFCN= f1 rootSequenceIndex = 0 Reference Signal EPRE= -85 dBm/15kHz upperLayerIndication-r15=true

NR Cell B Cell Id=02 TAC = 01 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -125 dBm/30kHz

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in NSA mode.

[Initial conditions]

SS

E-UTRAN Cell A is not active NR Cell B is not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

5.6.1.5 Test procedure

Table 5.1.1.5-1: Time of cell power level and parameter changes

Time	E-UTRAN Cell A	NR Cell B	Remark
то	-85	-90	

PREAMBLE

- 1. Activate E-UTRAN Cell A, NR Cell B.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 5.6.1.5-1.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure with activation of the initial default EPS bearer on Cell A (see 36.508, 4.5.2).
- 5. The SS sends an ue-CapabilityRequest including the RAT type "eutra-nr".
- 6. Verify the UE sends UECapabilityInformation message including the RAT type "eutra-nr".
- 7. The SS sends an RRCConnectionReconfiguration message containing NR RRCReconfiguration message to add Cell B as NR PS-Cell with Split DRB.
- 8. The UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.
- 9. Verify that Data tranfer(Ping) perofrmed on NR cell B

MAIN BODY

- 10. Send RRCConnectionReconfiguration message containing NR RRCReconfiguration to configure NR Measurement Objects, Report configuration, Report Quantity, Codebook Configuration(Type 1), Resource periodicity and offset to the UE
- 11. The UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.
- 12. Verify that CSI-RS measurements are received for the NR cell

POSTAMBLE

- 13. The SS initiates a Detach procedure.
- 14. The SS initiates a RRC release procedure.
- 15. Deactivate E-UTRAN Cell A and NR Cell B.

<u>.</u>	Moscage Sequence					
Step		1	Message Sequence	1	Verdict	
	U-S	Layer	Message	Specific Contents		
			Connect the power consumption tester to			
			the UE			
1	←	RRC	Activate E-UTRAN Cell A and NR Cell B.			
2			SS configures the initial power according to			
			T0 in Table 5.6.1.5-1.			
3		UE	Switch On UE	AT Command		
4	\rightarrow	NAS	UE performs the registration procedure with		PASS	
	←	RRC	activation of the initial default EPS bearer on			
			Cell A (see 36.508, 4.5.2).			
5	←	RRC	The SS sends an ue-CapabilityRequest			
			including the RAT type "eutra-nr".			
6	\rightarrow	→ RRC Verify the UE sends UECapabilityInformation				
			message including the RAT type "eutra-nr".			
7	←	NAS	SS sends an RRCConnectionReconfiguration			
		RRC	message containing NR RRCReconfiguration			
			message to add Cell B as NR PS-Cell with Split			
			DRB.			
8	\rightarrow	RRC	UE sends an		PASS	
			RRCConnectionReconfigurationComplete			
			message containing NR			
			RRCReconfigurationComplete message.			
9			Verify the data transmission is performed		PASS	
			successfully on NR Cell B.			
10	←	RRC	SS sends an RRCConnectionReconfiguration			
			message containing NR RRCReconfiguration			
			message to configure the Periodic CSI-RS			
		1				

Table 5.6.1.55.1.1.5-2: Message Sequence

			Measurements			
11	\rightarrow	RRC	UE	sends	an	
			RRCConnectionRe	econfigurationCom	olete	
			message	containing	NR	
			RRCReconfigurati	onComplete messa	ge.	
12	\rightarrow		Verify that period	lic CSI-RS measurer	nents are	PASS
			received			
13	\rightarrow	NAS	SS initiates a Deta	ach procedure.		PASS
	÷					
14	÷	RRC	SS initiates a RRC	release procedure.		
15			Deactivate E-UTR	AN Cell A and NR C	ell B.	

5.6.1.6 Expected Result

Verify that UE sends periodic CSI-RS measurements in PUCCH for NR cell

5.6.2 CSI Reporting Aperiodic in PUSCH

5.6.2.1 Test Purpose

Aperiodic CSI measurement configuration for CSI type 1 in NR cell when UE is connected to EN-DC.

5.6.2.2 Reference specification

TS 36.304, clause 5.2.4, TS 38.213, 38.331

5.6.2.3 Applicability

This test applies to the device that supports NSA or SA+NSA.

5.6.2.4 Test conditions

[SS configuration] Cell A is E-UTRAN Cell, CellB is a NR Cell. Cell A supports NSA

E-UTRAN Cell A Cell Id=01 TAC = 01 MCC-MNC = 460-00 EARFCN= f1 rootSequenceIndex = 0 Reference Signal EPRE= -85 dBm/15kHz upperLayerIndication-r15=true

NR Cell B Cell Id=02 TAC = 01

MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -125 dBm/30kHz

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in NSA mode.

[Initial conditions]

SS

E-UTRAN Cell A is not active NR Cell B is not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

5.6.2.5 Test procedure

Table 5.1.1.5-1: Time of cell power level and parameter changes

Time	E-UTRAN Cell A	NR Cell B	Remark
ТО	-85	-90	

PREAMBLE

- 1. Activate E-UTRAN Cell A, NR Cell B.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 5.6.2.5-1.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure with activation of the initial default EPS bearer on Cell A (see 36.508, 4.5.2).
- 5. The SS sends an ue-CapabilityRequest including the RAT type "eutra-nr".
- 6. Verify the UE sends UECapabilityInformation message including the RAT type "eutra-nr".
- 7. The SS sends an RRCConnectionReconfiguration message containing NR RRCReconfiguration message to add Cell B as NR PS-Cell with Split DRB.
- 8. The UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.
- 9. Verify that Data tranfer(Ping) perofrmed on NR cell B

MAIN BODY

- Send RRCConnectionReconfiguration message containing NR RRCReconfiguration to configure NR Measurement Objects, Report configuration, Report Quantity, Codebook Configuration(Type 1), Resource periodicity and offset to the UE
- 11. The UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.

- 12. SS sends DCI to trigger the Aperiodic CSI-RS Measurements to the UE
- 13. Verify that CSI-RS measurements are received for the NR cell

POSTAMBLE

- 14. The SS initiates a Detach procedure.
- 15. The SS initiates a RRC release procedure.
- 16. Deactivate E-UTRAN Cell A and NR Cell B.

Step			Message Sequence		Verdict
	U-S	Layer	Message	Specific Contents	
			Connect the power consumption tester to		
			the UE		
1	÷	RRC	Activate E-UTRAN Cell A and NR Cell B.		
2			SS configures the initial power according to		
			T0 in Table 5.6.2.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure with		PASS
	÷	RRC	activation of the initial default EPS bearer on		
			Cell A (see 36.508, 4.5.2).		
5	÷	RRC	The SS sends an ue-CapabilityRequest		
			including the RAT type "eutra-nr".		
6	\rightarrow	RRC	Verify the UE sends UECapabilityInformation		
			message including the RAT type "eutra-nr".		
7	÷	NAS	SS sends an RRCConnectionReconfiguration		
		RRC	message containing NR RRCReconfiguration		
			message to add Cell B as NR PS-Cell with Split		
			DRB.		
8	\rightarrow	RRC	UE sends an		PASS
			RRCConnectionReconfigurationComplete		
			message containing NR		
			RRCReconfigurationComplete message.		
9			Verify the data transmission is performed		PASS
			successfully on NR Cell B.		
10	÷	RRC	SS sends an RRCConnectionReconfiguration		
			message containing NR RRCReconfiguration		
			message to configure the Periodic CSI-RS		
			Measurements		
11	\rightarrow	RRC	UE sends an		
			RRCConnectionReconfigurationComplete		
			message containing NR		
			RRCReconfigurationComplete message.		
12	÷		SS sends DCI to trigger Aperiodic CSI-RS		

			measurements to the UE	
13	\rightarrow		Verify that Aperiodic CSI-RS measurements	PASS
			are received	
14	\rightarrow	NAS	SS initiates a Detach procedure.	PASS
	÷			
15	÷	RRC	SS initiates a RRC release procedure.	
16			Deactivate E-UTRAN Cell A and NR Cell B.	

5.6.2.6 Expected Result

Verify that UE sends aperiodic CSI-RS measurements in PUSCH for NR cell

5.6.3 CSI Reporting Aperiodic in PUSCH

5.6.3.1 Test Purpose

Aperiodic CSI measurement configuration for CSI type 1 in NR CA cell when UE is connected to EN-DC.

5.6.3.2 Reference specification

TS 36.304, clause 5.2.4, TS 38.213, 38.331

5.6.3.3 Applicability

This test applies to the device that supports NSA or SA+NSA.

5.6.3.4 Test conditions

[SS configuration] Cell A is E-UTRAN Cell, Cell B and Cell C are NR Cells. Cell A supports NSA

E-UTRAN Cell A Cell Id=01 TAC = 01 MCC-MNC = 460-00 EARFCN= f1 rootSequenceIndex= 0 Reference Signal EPRE= -85 dBm/15kHz upperLayerIndication-r15=true

NR Cell B Cell Id=02 TAC = 01 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -125 dBm/30kHz

NR Cell C Cell Id=03 TAC = 01 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -125 dBm/30kHz

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in NSA mode.

[Initial conditions]

SS

E-UTRAN Cell A is not active NR Cell B is not active NR Cell C is not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

5.6.3.5 Test procedure

Table 5.1.1.5-1: Time of cell power level and parameter changes

Time	E-UTRAN Cell A	NR Cell B	NR Cell C	Remark
Т0	-85	-90	-95	

PREAMBLE

- 1. Activate E-UTRAN Cell A, NR Cell B.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 5.6.3.5-1.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure with activation of the initial default EPS bearer on Cell A (see 36.508, 4.5.2).
- 5. The SS sends an ue-CapabilityRequest including the RAT type "eutra-nr".
- 6. Verify the UE sends UECapabilityInformation message including the RAT type "eutra-nr".
- 7. The SS sends an RRCConnectionReconfiguration message containing NR RRCReconfiguration message to add Cell B as NR PS-Cell with Split DRB.
- 8. The UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.
- 9. Verify that Data tranfer(Ping) perofrmed on NR cell B

MAIN BODY

10. SS Sends an RRCConnectionReconfiguration message containing NR RRCReconfiguration

message to add Cell C as NR S-Cell to NR PS-Cell A

- 11. The UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.
- 12. Send RRCConnectionReconfiguration message containing NR RRCReconfiguration to configure NR Measurement Objects, Report configuration, Report Quantity, Codebook Configuration(Type 1), Resource periodicity and offset to the UE
- 13. The UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.
- 14. SS sends DCI to trigger the Aperiodic CSI-RS Measurements to the UE
- 15. Verify that CSI-RS measurements are received for the NR S-Cell

POSTAMBLE

- 16. The SS initiates a Detach procedure.
- 17. The SS initiates a RRC release procedure.
- 18. Deactivate E-UTRAN Cell A and NR Cell B.

			Table 5.0.5.55.1.1.5-2. Message Sequen		
Step			Message Sequence		Verdict
	U-S	Layer	Message	Specific Contents	
			Connect the power consumption tester to		
			the UE		
1	←	RRC	Activate E-UTRAN Cell A and NR Cell B.		
2			SS configures the initial power according to		
			T0 in Table 5.6.3.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure with		PASS
	÷	RRC	activation of the initial default EPS bearer on		
			Cell A (see 36.508, 4.5.2).		
5	÷	RRC	The SS sends an ue-CapabilityRequest		
			including the RAT type "eutra-nr".		
6	\rightarrow	RRC	Verify the UE sends UECapabilityInformation		
			message including the RAT type "eutra-nr".		
7	÷	NAS	SS sends an RRCConnectionReconfiguration		
		RRC	message containing NR RRCReconfiguration		
			message to add Cell B as NR PS-Cell with Split		
			DRB.		
8	\rightarrow	RRC	UE sends an		PASS
			RRCConnectionReconfigurationComplete		
			message containing NR		
			RRCReconfigurationComplete message.		
9			Verify the data transmission is performed		PASS
			successfully on NR Cell B.		
10	÷	RRC	SS sends an RRCConnectionReconfiguration		

Table 5.6.3.55.1.1.5-2: Message Sequence

		1		1
			message containing NR RRCReconfiguration	
			message to add NR Cell C as NR S-Cell to NR	
			PS-Cell B	
11	\rightarrow	RRC	UE sends an	PASS
			RRCConnectionReconfigurationComplete	
			message containing NR	
			RRCReconfigurationComplete message.	
12	÷	RRC	SS sends an RRCConnectionReconfiguration	
			message containing NR RRCReconfiguration	
			message to configure the Periodic CSI-RS	
			Measurements	
13	\rightarrow	RRC	UE sends an	
			RRCConnectionReconfigurationComplete	
			message containing NR	
			RRCReconfigurationComplete message.	
14	(SS sends DCI to trigger Aperiodic CSI-RS	
			measurements to the UE	
15	\rightarrow		Verify that Aperiodic CSI-RS measurements	PASS
			are received for NR cell C	
16	\rightarrow	NAS	SS initiates a Detach procedure.	PASS
	←			
17	\	RRC	SS initiates a RRC release procedure.	
18			Deactivate E-UTRAN Cell A and NR Cell B.	

5.6.3.6 Expected Result

Verify that UE sends aperiodic CSI-RS measurements in PUSCH for NR cell C

5.6.4 CSI-RS Based Intra Frequency Measurements on Neighbour Cell Beams

5.6.4.1 Test Purpose

Verify that When CSI-RSRP measurements are activated for multiple neigbour beam indexes, UE reports the beam indexes properly

5.6.4.2 Reference specification

TS 36.304, clause 5.2.4, TS 38.213, 38.331

5.6.4.3 Applicability

This test applies to the device that supports NSA or SA+NSA.

5.6.4.4 Test conditions

[SS configuration] Cell A is E-UTRAN Cell, Cell B and Cell C are intra frequency NR Cells.

Cell A supports NSA

E-UTRAN Cell A Cell Id=01 TAC = 01 MCC-MNC = 460-00 EARFCN= f1 rootSequenceIndex= 0 Reference Signal EPRE= -85 dBm/15kHz upperLayerIndication-r15=true

NR Cell B Cell Id=02 TAC = 01 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -125 dBm/30kHz

NR Cell C Cell Id=03 TAC = 01 MCC = 460 MNC = 00 NR-ARFCN= f1

SS/PBCH SSS EPRE for Beam 1 = -125 dBm/30kHz SS/PBCH SSS EPRE for Beam 2 = -125 dBm/30kHz

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in NSA mode.

[Initial conditions]

SS

E-UTRAN Cell A is not active NR Cell B is not active NR Cell C is not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

5.6.4.5 Test procedure

Table 5.1.1.5-1: Time of cell power level and parameter changes

Time	E-UTRAN Cell A	NR Cell B	NR Cell C	Remark
Т0	-85	-90	-98	

r		I		
T1	-85	-106	-98	

PREAMBLE

- 1. Activate E-UTRAN Cell A, NR Cell B.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 5.6.4.5-1.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure with activation of the initial default EPS bearer on Cell A (see 36.508, 4.5.2).
- 5. The SS sends an ue-CapabilityRequest including the RAT type "eutra-nr".
- 6. Verify the UE sends UECapabilityInformation message including the RAT type "eutra-nr".
- 7. The SS sends an RRCConnectionReconfiguration message containing NR RRCReconfiguration message to add Cell B as NR PS-Cell with Split DRB.
- 8. The UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.
- 9. Verify that Data tranfer(Ping) perofrmed on NR cell B

MAIN BODY

- 10. SS Sends an RRCConnectionReconfiguration message containing NR RRCReconfiguration message to configure the measurement configuration to setup a SS/PBCH block based intra frequency NR measurements for NR cell B and reporting event A3
- 11. The UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.
- 12. SS reconfigures the cell power level according to T1 in Table 5.6.4.5-1
- 13. Verify that UE sends measured result for Event A3 with beam information containing RsIndex[0] and RsIndex[1] for neighbour NR cell C

POSTAMBLE

- 14. The SS initiates a Detach procedure.
- 15. The SS initiates a RRC release procedure.
- 16. Deactivate E-UTRAN Cell A and NR Cell B.

Step			Message Sequence		Verdict
	U-S	Layer	Message	Specific Contents	
			Connect the power consumption tester to		
			the UE		
1	←	RRC	Activate E-UTRAN Cell A and NR Cell B.		
2			SS configures the initial power according to		
			T0 in Table 5.6.4.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure with		PASS
	←	RRC	activation of the initial default EPS bearer on		

Table 5.6.4.55.1.1.5-2: Message Sequence

			Cell A (see 36.508, 4.5.2).	
5	÷	RRC	The SS sends an ue-CapabilityRequest	
			including the RAT type "eutra-nr".	
6	\rightarrow	RRC	Verify the UE sends UECapabilityInformation	
			message including the RAT type "eutra-nr".	
7	←	NAS	SS sends an RRCConnectionReconfiguration	
		RRC	message containing NR RRCReconfiguration	
			message to add Cell B as NR PS-Cell with Split	
			DRB.	
8	\rightarrow	RRC	UE sends an	PASS
			RRCConnectionReconfigurationComplete	
			message containing NR	
			RRCReconfigurationComplete message.	
9			Verify the data transmission is performed	PASS
			successfully on NR Cell B.	
10	4	RRC	SS sends an RRCConnectionReconfiguration	
			message containing NR RRCReconfiguration	
			message to configure the measurement	
			configuration to setup a SS/PBCH block based	
			intra frequency NR measurements for NR cell	
			B and reporting event A3	
11	\rightarrow	RRC	UE sends an	PASS
			RRCConnectionReconfigurationComplete	
			message containing NR	
			RRCReconfigurationComplete message.	
12	←	RRC	SS reconfigures the cell power level according	
			to T1 in Table 5.6.4.5-1	
13	\rightarrow	RRC	UE sends measured result in Measurement	
			report for Event A3 with beam information	
			containing RsIndex[0] and RsIndex[1] for NR	
			cell C	
14	\rightarrow	NAS	SS initiates a Detach procedure.	PASS
	÷			
15	÷	RRC	SS initiates a RRC release procedure.	
16			Deactivate E-UTRAN Cell A and NR Cell B.	

5.6.4.6 Expected Result

Verify that UE sends measurement report for two beam indexes for the neighbour NR cell C

5.6.5 CSI-RS Based Inter Frequency Measurements on Neighbour Cell Beams

5.6.5.1 Test Purpose

Verify that When CSI-RSRP measurements are activated for multiple neigbour beam indexes, UE reports the beam indexes properly

5.6.5.2 Reference specification

TS 36.304, clause 5.2.4, TS 38.213, 38.331

5.6.5.3 Applicability

This test applies to the device that supports NSA or SA+NSA.

5.6.5.4 Test conditions

[SS configuration] Cell A is E-UTRAN Cell, Cell B and Cell C are inter frequency NR Cells. Cell A supports NSA

```
E-UTRAN Cell A
Cell Id=01 TAC = 01
MCC-MNC = 460-00
EARFCN= f1
rootSequenceIndex = 0
Reference Signal EPRE= -85 dBm/15kHz
upperLayerIndication-r15=true
```

NR Cell B Cell Id=02 TAC = 01 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -125 dBm/30kHz

```
NR Cell C
Cell Id=03 TAC = 01
MCC = 460 MNC = 00
NR-ARFCN= f1
SS/PBCH SSS EPRE for Beam 1 = -125 dBm/30kHz
SS/PBCH SSS EPRE for Beam 2 = -125 dBm/30kHz
```

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in NSA mode.

[Initial conditions] SS E-UTRAN Cell A is not active

NR Cell B is not active NR Cell C is not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

5.6.5.5 Test procedure

Table 5 1 1 5-1. Time	of cell nower leve	el and parameter changes
	of cell power leve	and parameter changes

Time	E-UTRAN Cell A	NR Cell B	NR Cell C	Remark
то	-85	-90	-98	
T1	-85	-106	-98	

PREAMBLE

- 1. Activate E-UTRAN Cell A, NR Cell B.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 5.6.5.5-1.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure with activation of the initial default EPS bearer on Cell A (see 36.508, 4.5.2).
- 5. The SS sends an ue-CapabilityRequest including the RAT type "eutra-nr".
- 6. Verify the UE sends UECapabilityInformation message including the RAT type "eutra-nr".
- 7. The SS sends an RRCConnectionReconfiguration message containing NR RRCReconfiguration message to add Cell B as NR PS-Cell with Split DRB.
- 8. The UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.
- 9. Verify that Data tranfer(Ping) perofrmed on NR cell B

MAIN BODY

- 10. SS Sends an RRCConnectionReconfiguration message containing NR RRCReconfiguration message to configure the measurement configuration to setup a SS/PBCH block based inter frequency NR measurements for NR cell C and reporting event A3
- 11. The UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.
- 12. SS reconfigures the cell power level according to T1 in Table 5.6.5.5-1
- 13. Verify that UE sends measured result for Event A3 with beam information containing RsIndex[0] and RsIndex[1] for neighbour NR cell C

POSTAMBLE

- 14. The SS initiates a Detach procedure.
- 15. The SS initiates a RRC release procedure.
- 16. Deactivate E-UTRAN Cell A and NR Cell B.

Step			Message Sequence		Verdict
	U-S	Layer	Message	Specific Contents	
			Connect the power consumption tester to		
			the UE		
1	~	RRC	Activate E-UTRAN Cell A and NR Cell B.		
2			SS configures the initial power according to		
			T0 in Table 5.6.5.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure with		PASS
	←	RRC	activation of the initial default EPS bearer on		
			Cell A (see 36.508, 4.5.2).		
5	÷	RRC	The SS sends an ue-CapabilityRequest		
			including the RAT type "eutra-nr".		
6	\rightarrow	RRC	Verify the UE sends UECapabilityInformation		
			message including the RAT type "eutra-nr".		
7	~	NAS	SS sends an RRCConnectionReconfiguration		
		RRC	message containing NR RRCReconfiguration		
			message to add Cell B as NR PS-Cell with Split		
			DRB.		
8	\rightarrow	RRC	UE sends an		PASS
			RRCConnectionReconfigurationComplete		
			message containing NR		
			RRCReconfigurationComplete message.		
9			Verify the data transmission is performed		PASS
			successfully on NR Cell B.		
10	~	RRC	SS sends an RRCConnectionReconfiguration		
			message containing NR RRCReconfiguration		
			message to configure the measurement		
			configuration to setup a SS/PBCH block based		
			inter frequency NR measurements for NR cell		
			C and reporting event A3		
11	\rightarrow	RRC	UE sends an		PASS
			RRCConnectionReconfigurationComplete		
			message containing NR		
			RRCReconfigurationComplete message.		
12	÷	RRC	SS reconfigures the cell power level according		
			to T1 in Table 5.6.5.5-1		
13	\rightarrow	RRC	UE sends measured result in Measurement		
			report for Event A3 with beam information		
			containing RsIndex[0] and RsIndex[1] for NR		
			cell C		
14	\rightarrow	NAS	SS initiates a Detach procedure.		PASS
	←				

Table 5.1.1.5-2: Message Sequence

15	÷	RRC	SS initiates a RRC release procedure.	
16			Deactivate E-UTRAN Cell A and NR Cell B.	

5.6.5.6 Expected Result

Verify that UE sends measurement report for two beam indexes for the neighbour NR cell C

5.7 RRC Inactive mode cases in SA

5.7.1 RRC Connected Mode to RRC Inactive Mode and RRC Resume Procedure

5.7.1.1 Test Purpose

When RRC connection Release is send to UE with Suspending RRC connection verify that UE is entering RRC Inactive mode. When Paging is sent to UE in RRC Inactive Mode verify that UE resumes the RRC Connection by initiating RRC Resume Procedure

5.7.1.2 Reference specification

TS 38.304, TS 38.331, TS 38.300

5.7.1.3 Applicability

This test applies to the device that supports SA or SA+NSA.

5.7.1.4 Test conditions

[SS configuration] Cell A is a NR Cell. Cell A supports only SA

NR Cell A Cell Id=01 TAC = 01 MCC = 460 MNC = 00 NR Band = n41 NR-ARFCN= f1 Bandwidth = 100 MHz SS/PBCH SSS EPRE = -125 dBm/30kHz

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in SA mode.

[Initial conditions] SS NR Cell A is not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

5.7.1.5 Test procedure

Table 5.1.1.55-1: Time of cell power level and parameter changes

Time	NR Cell A	Remark
ТО	-75	

PREAMBLE

- 1. Activate NR Cell A.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 5.7.1.5-1.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure on Cell A (see 38.508, Table 4.5.2.2-2 till Step 18).
- 5. Verify that Data tranfer(Ping) perofrmed on NR cell A

MAIN BODY

- 6. The RRC connection is released by the SS with suspendConfig. The UE enters Registered, Inactive Mode
- 7. SS initiates paging message to UE
- 8. Verify that UE is initiating RRC Resume Procedure by sending RRCResumeRequest to SS
- 9. SS transmits RRCResume message to the UE
- 10. Verify that UE is sending RRCResumeComplete to SS
- 11. Verify that Data tranfer(Ping) perofrmed on NR cell A

POSTAMBLE

- 12. The SS initiates a Deregitration procedure.
- 13. The SS initiates a RRC release procedure.
- 14. Deactivate NR Cell A.

Step		Message Sequence			Verdict
	U-S Layer Message			Specific Contents	
			Connect the power consumption tester to		
			the UE		
1	÷	RRC	Activate NR Cell A.		
2			SS configures the initial power according to		
			T0 in Table 5.7.1.5-1.		
3		UE	Switch On UE	AT Command	

Table 5.1.1.5-2: Message Sequence

GTI 5G Function and Performance Test Specification v4.2 – September 2021

4	\rightarrow	NAS	UE performs the registration procedure (see	PASS	
	÷	RRC	38.508, Table 4.5.2.2-2 till Step 18).		
5			Verify the data transmission is performed	PASS	
			successfully on NR Cell A.		
6	←	RRC	The RRC connection is released by the SS		
			with suspendConfig.		
7	÷	RRC	Paging		
8	\rightarrow	RRC	RRCResumeRequest	PASS	
9	÷	RRC	RRCResume		
10	\rightarrow	RRC	RRCResumeComplete	PASS	
11			Verify the data transmission is performed	PASS	
			successfully on NR Cell A.		
12	\rightarrow	NAS	SS initiates a Deregitration procedure.	PASS	
	←				
13	←	RRC	SS initiates a RRC release procedure.		
14			Deactivate NR Cell A.		

5.7.1.6 Expected Result

Verify that UE moves to RRC Inactive Mode and comes back to RRC Connected mode when instructed.

5.7.2 Periodic RNA Update Procedure in RRC Inactive Mode

5.7.2.1 Test Purpose

When RNA Update timer expires in RRC Inactive Mode verify that UE initiates RRC Connection Resume Procedure for RNA Update

5.7.2.2 Reference specification

TS 38.304, TS 38.331, TS 38.300

5.7.2.3 Applicability

This test applies to the device that supports SA or SA+NSA.

5.7.2.4 Test conditions

[SS configuration] Cell A is a NR Cell. Cell A supports only SA

NR Cell A Cell Id=01 TAC = 01 MCC = 460 MNC = 00 NR Band = n41

NR-ARFCN= f1 Bandwidth = 100 MHz SS/PBCH SSS EPRE = -125 dBm/30kHz T380 = min5

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in SA mode.

[Initial conditions]

SS

NR Cell A is not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

5.7.2.5 Test procedure

Table 5.1.1.55-1: Time of cell power level and parameter changes

Time	NR Cell A	Remark
ТО	-75	

PREAMBLE

- 1. Activate NR Cell A.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 5.7.2.5-1.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure on Cell A (see 38.508, Table 4.5.2.2-2 till Step 18).
- 5. Verify that Data tranfer(Ping) perofrmed on NR cell A

MAIN BODY

- 6. The RRC connection is released by the SS with suspendConfig. The UE enters Registered, Inactive Mode
- 7. Wait for t380 timer duration
- 8. After t380 expiry Verify that UE is initiating RRC Resume Procedure by sending RRCResumeRequest with resume cause set as 'rna-Update' to SS
- 9. SS transmits RRCResume message to the UE
- 10. Verify that UE is sending RRCResumeComplete to SS
- 11. Verify that Data tranfer(Ping) perofrmed on NR cell A

POSTAMBLE

- 12. The SS initiates a Deregitration procedure.
- 13. The SS initiates a RRC release procedure.
- 14. Deactivate NR Cell A.

			Table 5.1.1.5-2. Message Sequence		
Step			Message Sequence		Verdict
	U-S	Layer	Message	Specific Contents	
			Connect the power consumption tester to		
			the UE		
1	÷	RRC	Activate NR Cell A.		
2			SS configures the initial power according to		
			T0 in Table 5.7.2.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure (see		PASS
	÷	RRC	38.508, Table 4.5.2.2-2 till Step 18).		
5			Verify the data transmission is performed		PASS
			successfully on NR Cell A.		
6	←	RRC	The RRC connection is released by the SS		
			with suspendConfig.		
7			Wait for t380 timer duration		
8	\rightarrow	RRC	RRCResumeRequest with resume cause		PASS
			rna-update		
9	÷	RRC	RRCResume		
10	\rightarrow	RRC	RRCResumeComplete		PASS
11			Verify the data transmission is performed		PASS
			successfully on NR Cell A.		
12	\rightarrow	NAS	SS initiates a Deregitration procedure.		PASS
	←				
13	÷	RRC	SS initiates a RRC release procedure.		
14			Deactivate NR Cell A.		

Table 5.1.1.5-2: Message Sequence

5.7.2.6 Expected Result

Verify that when t380 expired, UE is initiating RRC Connection Resume Procedure

5.7.3 RNA Update in RRC Inactive Mode for Cell Reselection to new RNA cell

5.7.3.1 Test Purpose

When UE is reselecting into new RNA Cell while in RRC Inactive Mode, verify that it initiates RRC Resume Procedure to update the RNA

5.7.3.2 Reference specification

TS 38.304, TS 38.331, TS 38.300

5.7.3.3 Applicability

This test applies to the device that supports SA or SA+NSA.

5.7.3.4 Test conditions

[SS configuration] Cell A and Cell B are NR Cells. Cell A and Cell B supports only SA

NR Cell A Cell Id=01 TAC = 01 MCC = 460 MNC = 00 NR Band = n41 NR-ARFCN= f1 Bandwidth = 100 MHz SS/PBCH SSS EPRE = -125 dBm/30kHz T380 = min10

NR Cell B Cell Id=02 TAC = 01 MCC = 460 MNC = 00 NR Band = n41 NR-ARFCN= f1 Bandwidth = 100 MHz SS/PBCH SSS EPRE = -125 dBm/30kHz T380 = min5

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in SA mode.

[Initial conditions]

SS

NR Cell A is not active NR Cell B is not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

5.7.3.5 Test procedure

Table 5.1.1.55-1: Time of cell power level and parameter changes

Time	NR Cell A	NR Cell B	Remark
т0	-75	-145	
T1	-95	-75	Reselection to Cell B

PREAMBLE

- 1. Activate NR Cell A.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 5.7.3.5-1.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure on Cell A (see 38.508, Table 4.5.2.2-2 till Step 18).
- 5. Verify that Data tranfer(Ping) perofrmed on NR cell A

MAIN BODY

- 6. The RRC connection is released by the SS with suspendConfig. The UE enters Registered, Inactive Mode
- 7. The SS configures the cell power level according to T1 in Table 5.7.3.5-1
- 8. Verify that UE is initiating RRC Resume Procedure by sending RRCResumeRequest with resume cause set as 'rna-Update' to SS in NR Cell B
- 9. SS transmits RRCResume message to the UE in NR Cell B
- 10. Verify that UE is sending RRCResumeComplete to SS in NR Cell B
- 11. Verify that Data tranfer(Ping) perofrmed on NR cell B

POSTAMBLE

- 12. The SS initiates a Deregitration procedure.
- 13. The SS initiates a RRC release procedure.
- 14. Deactivate NR Cell A.

Step		Message Sequence			Verdict
	U-S Layer Message		Specific Contents		
			Connect the power consumption tester to		
			the UE		
1	÷	RRC	Activate NR Cell A.		
2			SS configures the initial power according to		
			T0 in Table 5.7.3.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure (see		PASS
	÷	RRC	38.508, Table 4.5.2.2-2 till Step 18).		
5			Verify the data transmission is performed		PASS

Table 5.1.1.5-2: Message Sequence

GTI 5G Function and Performance Test Specification v4.2 – September 2021

			successfully on NR Cell A.	
6	÷	RRC	The RRC connection is released by the SS	
			with suspendConfig.	
7			The SS configures the cell power level	
			according to T1 in Table 5.7.3.5-1	
8	\rightarrow	RRC	RRCResumeRequest with resume cause	PASS
			rna-update in Cell B	
9	÷	RRC	RRCResume in Cell B	
10	\rightarrow	RRC	RRCResumeComplete in Cell B	PASS
11			Verify the data transmission is performed	PASS
			successfully on NR Cell B.	
12	\rightarrow	NAS	SS initiates a Deregitration procedure.	PASS
	÷			
13	÷	RRC	SS initiates a RRC release procedure.	
14			Deactivate NR Cell A and B.	

5.7.3.6 Expected Result

Verify that when reselection performed on new RNA cell while in RRC Inactive Mode, UE initiates the RRC Resume Procedure to SS

5.8 Access Barring, Access Class

5.8.1 Cell Barred while in RRC IDLE State

5.8.1.1 Test Purpose

When cell is barred while UE is RRC IDLE state, Verify that UE is reselecting onto another intra frequency neighbor cell

5.8.1.2 Reference specification

TS 38.304, TS 38.331, TS 38.300

5.8.1.3 Applicability

This test applies to the device that supports SA or SA+NSA.

5.8.1.4 Test conditions

[SS configuration] Cell A and Cell B are NR Cells. Cell A and B supports only SA

NR Cell A Cell Id=01 TAC = 01 MCC = 460 MNC = 00

NR Band = n41 NR-ARFCN= f1 Bandwidth = 100 MHz SS/PBCH SSS EPRE = -125 dBm/30kHz

NR Cell B

```
Cell Id=02 TAC = 01
MCC = 460 MNC = 00
NR Band = n41
NR-ARFCN= f1
Bandwidth = 100 MHz
SS/PBCH SSS EPRE = -125 dBm/30kHz
```

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in SA mode.

[Initial conditions]

SS

NR Cell A is not active NR Cell B is not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

5.8.1.5 Test procedure

Time	NR Cell A	NR Cell B	Remark
TO	-75	-85	

PREAMBLE

- 1. Activate NR Cell A and B.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 5.8.1.5-1.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure on Cell A (see 38.508, Table 4.5.2.2-2 till Step 20a1).

MAIN BODY

- 5. SS transmits short message(with bit 1 set to 1) in PDCCH using P-RNTI with or without paging message using short message field in DCI_format 1_0
- 6. SS Transmits Cell A MIB with barred as for cellBarred IE and SIBs.
- 7. The UE performs the Reselection procedure on Cell B
- 8. SS initiates paging message to UE on Cell B
- 9. UE sends RRC Request to the SS on Cell B
- 10. SS transmits RRC Setup message to UE
- 11. UE sends RRC Setup Complete with Service Request NAS message
- 12. SS sends the Access stratum Security Mode Command to the UE
- 13. UE responds with AS Security Mode Complete to the SS
- 14. SS Transmits RRC Reconfiguration to establish SRB2 and DRB with a Service accept NAS message
- 15. UE sends RRC Reconfiguration Complete to the SS

POSTAMBLE

- 16. The SS initiates a Deregitration procedure.
- 17. The SS initiates a RRC release procedure.
- 18. Deactivate NR Cell A and B.

Step			Message Sequence		Verdict
	U-S	Layer	Message	Specific Contents	
			Connect the power consumption tester to		
			the UE		
1	÷	RRC	Activate NR Cell A.		
2			SS configures the initial power according to		
			T0 in Table 5.8.1.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure on		PASS
	÷	RRC	Cell A (see 38.508, Table 4.5.2.2-2 till Step		
			20a1).		
5	÷	MAC	SS sends short message to the UE with		
			systemInfoModification bit set 1		
6	÷	RRC	SS broadcasts MIB with cellBarred IE as		
			barred		
7			UE performs IDLE Mode reselection		
			procedure in Cell B		
8	÷	RRC	Paging in Cell B		
9	\rightarrow	RRC	RRCRequest in Cell B		PASS
10	÷	RRC	RRCSetup		
11	\rightarrow	NAS	RRCSetupComplete with Service Request NAS		

Table 5.1.1.5-2: Message Sequence

GTI 5G Function and Performance Test Specification v4.2 – September 2021

		RRC	message	
12	~	RRC	AS Security Mode Command	
13	\rightarrow	RRC	AS Security Mode Complete	
14	÷	NAS	RRCReconfiguration with Service Accept NAS	
		RRC	message	
15	\rightarrow	RRC	RRCReconfigurationComplete	PASS
16	\rightarrow	NAS	SS initiates a Deregitration procedure.	PASS
	÷			
17	÷	RRC	SS initiates a RRC release procedure.	
18			Deactivate NR Cell A and B	

5.8.1.6 Expected Result

While UE is RRC IDLE mode if Cell is barred verify that UE is reselecting into neighbour cell.

5.8.2 Access Categories for Different Services

5.8.2.1 Test Purpose

This case is to verify when different services are initiated then different access category is requested by the device

5.8.2.2 Reference specification

TS 38.304, TS 38.331, TS 38.300 , TS 34.229-5

5.8.2.3 Applicability

This test applies to the device that supports SA or SA+NSA.

5.8.2.4 Test conditions

[SS configuration] Cell A is a NR Cell. Cell A supports only SA

NR Cell A Cell Id=01 TAC = 01 MCC = 460 MNC = 00 NR Band = n41 NR-ARFCN= f1 Bandwidth = 100 MHz SS/PBCH SSS EPRE = -125 dBm/30kHz

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in SA mode.

[Initial conditions]

SS

NR Cell A is not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

5.8.2.5 Test procedure

Table 5.1.1.5-1: Time of cell power level and parameter changes

Time	NR Cell A	Remark
то	-75	

PREAMBLE

- 1. Activate NR Cell A.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 5.8.2.5-1.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure on Cell A (see clause 4.1.4)..

MAIN BODY

- 5. SS initiates paging message to UE
- 6. UE sends RRC Request with access category as 0(establishment cause as mt-Access) to the SS
- 7. SS transmits RRC Setup message to UE
- 8. UE sends RRC Setup Complete with Service Request NAS message
- 9. SS transmits the Access stratum Security Mode Command to the UE
- 10. UE responds with AS Security Mode Complete to the SS
- 11. SS Transmits RRC Reconfiguration to establish SRB2 and DRB with a Service accept NAS message
- 12. UE sends RRC Reconfiguration Complete to the SS
- 13. RRC connection is released by SS
- 14. Start the ping from UE to SS
- 15. UE sends RRC Request with access category as 7(establishment cause as mo-Data) to the SS
- 16. SS transmits RRC Setup message to UE
- 17. UE sends RRC Setup Complete to SS
- 18. SS transmits the AS Security Mode Command to the UE
- 19. UE responds with AS Security Mode Complete to the SS
- 20. SS Transmits RRC Reconfiguration to establish SRB2 and DRB with a Service accept NAS message

- 21. UE sends RRC Reconfiguration Complete to the SS
- 22. Ping is performed
- (IF UE is pre-set as Voice-centric, then run step 23-24)
- 23. SS send SIP_Notify to de-registers the UE's contact address with event as rejected
- 24. UE send SIP_200_OK to acknowledges
- 25. RRC connection is released by SS
- 26. Initiate the switch off procedure from UE
- 27. UE sends RRC Request with access category as 3(establishment cause as mo-signaling) to the SS
- 28. SS transmits RRC Setup message to UE
- 29. UE sends RRC Setup Complete with Deregistration NAS message
- 30. SS Transmits Deregistration Accept to UE

POSTAMBLE

- 31. The SS initiates a RRC release procedure.
- 32. Deactivate NR Cell A.

Step			Message Sequence		Verdict
	U-S	Layer	Message	Specific Contents	
			Connect the power consumption tester to		
			the UE		
1	÷	RRC	Activate NR Cell A.		
2			SS configures the initial power according to		
			T0 in Table 5.8.2.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure on		PASS
	÷	RRC	Cell A (see 38.508, Table 4.5.2.2-2 till Step		
			20a1).		
5	÷	RRC	Paging		
6	\rightarrow	RRC	RRCRequest with establishment cause as		PASS
			mt-Access		
7	÷	RRC	RRCSetup		
8	\rightarrow	NAS	RRCSetupComplete with Service Request NAS		
		RRC	message		
9	÷	RRC	AS Security Mode Command		
10	\rightarrow	RRC	AS Security Mode Complete		
11	÷	NAS	RRCReconfiguration with Service Accept NAS		
		RRC	message		
12	\rightarrow	RRC	RRCReconfigurationComplete		PASS
13	÷	RRC	RRCRelease		

Table 5.1.1.5-2: Message Sequence

14			Start the ping from UE to SS		
15	\rightarrow	RRC	RRCRequest with establishment cause as		PASS
			mo-Data		
16	÷	RRC	RRCSetup		
17	\rightarrow	NAS	RRCSetupComplete		
		RRC			
18	÷	RRC	AS Security Mode Command		
19	\rightarrow	RRC	AS Security Mode Complete		
20	÷	NAS	RRCReconfiguration		
		RRC			
21	\rightarrow	RRC	RRCReconfigurationComplete		PASS
22			PING Request and Response		
23	÷		SIP_Notify	Cond: UE is pre-set	
				as Voice-centric	
24	\rightarrow		SIP_200OK	Cond: UE is pre-set	
				as Voice-centric	
25	÷	RRC	RRCRelease		
26			Initiate the switch off Procedure from UE		
27	\rightarrow	RRC	RRCRequest with establishment cause as		PASS
			mo-Signaling		
28	÷	RRC	RRCSetup		
29	\rightarrow	RRC	RRCSetupComplete with Deregistration		PASS
		NAS	Request		
30	÷	NAS	Deregistration Accept		
31	÷	RRC	SS initiates a RRC release procedure.		
32			Deactivate NR Cell A		

5.8.2.6 Expected Result

For Different services, UE should use different access categories.

5.8.3 Access Barring Check in RRC

5.8.3.1 Test Purpose

This case is to verify access is barred for certain services verify that UE is not initiating access request for those barred services

5.8.3.2 Reference specification

TS 38.304, TS 38.331, TS 38.300, TS 24.501

5.8.3.3 Applicability

This test applies to the device that supports SA or SA+NSA.

5.8.3.4 Test conditions

[SS configuration] Cell A is a NR Cell. Cell A supports only SA

NR Cell A Cell Id=01 TAC = 01 MCC = 460 MNC = 00 NR Band = n41 NR-ARFCN= f1 Bandwidth = 100 MHz SS/PBCH SSS EPRE = -125 dBm/30kHz uac-BarringForCommon in SIB1 = for access category 7

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in SA mode.

```
[Initial conditions]
SS
```

5

NR Cell A is not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

5.8.3.5 Test procedure

Table 5.1.1.5-1: Time of cell power level and parameter changes

Time	NR Cell A	Remark
то	-75	

PREAMBLE

- 1. Activate NR Cell A.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 5.8.3.5-1.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure on Cell A (see 38.508, Table 4.5.2.2-2 till Step 18).

MAIN BODY

- 5. Start the ping from UE to SS
- 6. Verify that UE is not sending any RRCRequest for access attempt
- 7. SS initiates paging message to UE
- 8. UE sends RRC Request with access category as 0(establishment cause as mt-Access) to the SS
- 9. SS transmits RRC Setup message to UE
- 10. UE sends RRC Setup Complete with Service Request NAS message
- 11. SS transmits the Access stratum Security Mode Command to the UE
- 12. UE responds with AS Security Mode Complete to the SS
- 13. SS Transmits RRC Reconfiguration to establish SRB2 and DRB with a Service accept NAS message
- 14. UE sends RRC Reconfiguration Complete to the SS

POSTAMBLE

- 15. The SS initiates a Deregitration procedure.
- 16. The SS initiates a RRC release procedure.
- 17. Deactivate NR Cell A.

Step	Message Sequence			Verdict	
	U-S	Layer	Message	Specific Contents	-
			Connect the power consumption tester to		
			the UE		
1	←	RRC	Activate NR Cell A.		
2			SS configures the initial power according to		
			T0 in Table 5.8.3.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure on		PASS
	÷	RRC	Cell A (see 38.508, Table 4.5.2.2-2 till Step		
			20a1).		
5			Start the ping from UE to SS		
6			Verify that UE is not sending RRCRequest for		PASS
			access attempt		
7	÷	RRC	Paging		
8	\rightarrow	RRC	RRCRequest with establishment cause as		PASS
			mt-Access		
9	÷	RRC	RRCSetup		
10	\rightarrow	NAS	RRCSetupComplete with Service Request NAS		
		RRC	message		
11	÷	RRC	AS Security Mode Command		
12	\rightarrow	RRC	AS Security Mode Complete		
13	÷	NAS	RRCReconfiguration with Service Accept NAS		
		RRC	message		

Table 5.1.1.5-2: Message Sequence

14	\rightarrow	RRC	RRCReconfigurationComplete	PASS
15	\rightarrow	NAS	SS initiates a Deregitration procedure.	PASS
	←			
16	÷	RRC	SS initiates a RRC release procedure.	
17			Deactivate NR Cell A.	

5.8.3.6 Expected Result

If access category is barred by the cell, UE should not attempt to access for particular access category

5.9 DCI_ based BWP Switching

5.9.1 BWP change:upto2, downlink and uplink BWP switching by DCIs.

5.9.1.1 Test Purpose

Verify that UE could be able to support BWP changing based on DCIs.

5.9.1.2 Reference specification

TS 38.508, TS 34.229-5, TS 38.331, TS 38.521-1

5.9.1.3 Applicability

This test applies to type 1 and 2 devices as described in clause 4.2. This test applies to the device that supports VoNR.

5.9.1.4 Test conditions

[SS configuration] Cell A is a NR Cell. Cell A supports SA and VoNR&VoLTE

NR Cell A Cell Id=01 TAC = 01 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -125 dBm/30kHz rootSequenceIndex = 0 Modulation = UL:10/DL:19 RB Allocation UL= Full RB Allocation DL = Full simultaneousAckNackAndCQI = TRUE enableUL256QAM = TRUE

CPConfig = UL: Normal CP/DL: Normal CP subcarrierSpacing=30kHz

Table 5.9.1.4-1: Test Points Configuration

Test Point	Propagation	Correlation
	Conditions	Matrices
NR-1	Static	N/A

Table 5.9.1.4-2: Test band configuration

Test	Test band	Frequency	NR Frame	Specail Frame		
Point		Configuration	Structure			
1	n41	f1	DD DD DD DS UU	DDDDDDGGGGUUUU		
Note:						
1.Each test point should be tested as an independent test case.						
2. Check section 4.1.2.1 for details of test frequency						

Table 5.9.1.4-3: Bandwidth Part configurations

BWP id	Bandwidth [MHz]	Bandwidth[PRB]	subcarrierSpacing
BWP-1	100MHz	273	30kHz
BWP-2	20MHz	51	30kHz

[UE configuration]

The test UICC with USIM should be inserted

The UE is in AUTOMATIC network selection mode.

UE works in SA mode.

IMS VoLTE Feature should be enabled on DUT

[Initial conditions]

SS

NR Cell A is not active The test shall be performed under ideal radio conditions.

UE

UE is powered off

5.9.1.5 Test procedure

Table 5.1.1.5-1: Time of cell power level and parameter changes

	Time	Parameter	NR Cell A	Remark
F	т0	SS/PBCH	-85	

PREAMBLE

- 1. Activate NR Cell A. The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. Set the parameters of the propagation condition and initial power according to Table 5.9.1.5-1
- 3. The UE is powered ON, and random access to Cell A.
- 4. UE performs Registration, PDU session establish and IMS registration according to the common procedure defined in 4.1.4.

MAIN BODY

- Setup a TCP session with iperf and verify that UE downloads data correctly, keep the service for 30 seconds and verify the data transmission is performed successfully by using BWP-ID = 1 on Cell A.
- 6. SS sends RRC Reconfiguration message to add and activate BWP2 for both UL and DL.
- 7. UE sends RRC Reconfiguration Complete message to SS on NR cell A .
- Setup a TCP session with iperf and verify that UE downloads data correctly, keep the service for 30 seconds and verify the data transmission is performed successfully by using BWP-ID = 2 on Cell A.
- 9. SS sends DCI-0_1 with field: <u>'Bandwidth part indicator=</u>"01" (bin)' to trigger the BWP change from BWP2 to BWP1.
- 10. UE correctly decode the DCIs in BWP2 and succeed switch to BWP1.
- 11. Setup a TCP session with iperf and verify that UE downloads data correctly, keep the service for 30 seconds and verify the data transmission is performed successfully by using BWP1
- 12. SS sends DCI-0_1 with field: <u>'Bandwidth part indicator=</u>"10" (bin)' to trigger the BWP change from BWP1 to BWP2.
- 13. UE correctly decode the DCIs in BWP1 and succeed switch to BWP2.
- 14. Setup a TCP session with iperf and verify that UE downloads data correctly, keep the service for 30 seconds and verify the data transmission is performed successfully by using BWP2.

POSTAMBLE

- 15. SS initiates a de-registration procedure.
- 16. The SS initiates a RRC release procedure.
- 17. Deactivate NR Cell A.

5.9.1.6 Expected Result

- 1. Check and verify UE could perform BWP switch to BWP#1 by DCI on step #10
- 2. Check and record PDSCH_Througput achieved in step #11
- 3. Check and verify UE could perform BWP siwtch to BWP#2 by DCI on step #13
- 4. Check and record PDSCH_Througput achieved in step #14

5.9.2 BWP Change Advance, switching BWPs upto4: BWP1/BWP2/BWP3/BWP4 by DCIs.

5.9.2.1 Test Purpose

Verify that UE could be able to support BWP changing based on DCIs, tranversing BWP1, BWP2,BWP3,BWP4 of different Bandwidth(PRB numbers).

5.9.2.2 Reference specification

TS 38.508, TS 34.229-5, TS 38.331, TS 38.521-1

5.9.2.3 Applicability

This test applies to type 1 and 2 devices as described in clause 4.2. This test applies to the device that supports VoNR.

5.9.2.4 Test conditions

[SS configuration] Cell A is a NR Cell. Cell A supports SA and VoNR&VoLTE

```
NR Cell A
Cell Id=01 TAC = 01
MCC = 460 MNC = 00
NR-ARFCN= f1
SS/PBCH SSS EPRE = -125 dBm/30kHz
rootSequenceIndex = 0
Modulation = UL:10/DL:19
RB Allocation UL= Full
RB Allocation DL = Full
simultaneousAckNackAndCQI = TRUE
enableUL256QAM = TRUE
CPConfig = UL: Normal CP/DL: Normal CP
subcarrierSpacing=30kHz
```

Test Point	Propagation	Correlation			
	Conditions	Matrices			

Table 5.9.2.4-1: Test Points Configuration

GTI 5G Function and Performance Test Specification v4.2 – September 2021

NR-1 Static N/A

Test	Test band	Frequency	NR F	Frame	Specail Frame		
Point		Configuration	Structure				
1	n41	f1	DD DD DD D	DS UU	DDDDDDGGGGUUUU		
Note:							
1.Each test point should be tested as an independent test case.							
2. Check	2. Check section 4.1.2.1 for details of test frequency						

Table 5.9.2.4-3:	Bandwidth	Part o	onfigurations
10010 3.3.2.4 3.	Danawiath	i ui t t	Johngurations

		0	
BWP id	Bandwidth [MHz]	Bandwidth[PRB]	subcarrierSpacing
BWP-1	100MHz	273	30kHz
BWP-2	80MHz	217	30kHz
BWP-3	60MHz	162	30kHz
BWP-4	20MHz	51	30kHz

[UE configuration]

The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in SA mode. IMS VoLTE Feature should be enabled on DUT

[Initial conditions]

SS

NR Cell A is not active The test shall be performed under ideal radio conditions.

UE

UE is powered off

5.9.2.5 Test procedure

Table 5.1.1.5-1: Time of cell power level and parameter changes

Time	Parameter	NR Cell A	Remark
т0	SS/PBCH	-85	

PREAMBLE

- 1. Activate NR Cell A. The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. Set the parameters of the propagation condition and initial power according to Table

5.9.2.5-1

- 3. The UE is powered ON, and start random access to Cell A.
- 4. UE performs Registration, PDU session establish and IMS registration according to the common procedure defined in 4.1.4.

MAIN BODY

- 5. Verify the data transmission is performed successfully by using BWP-ID = 1 on Cell A.
- 6. SS sends RRC Reconfiguration message to add BWP2/ BWP3/ BWP4 and activate BWP2 for both UL and DL.
- 7. UE sends RRC Reconfiguration Complete message to SS on NR cell A .
- 8. Verify the data transmission is performed successfully by using BWP-ID = 2 on Cell A.
- 9. SS sends DCI-0_1 with field: '<u>Bandwidth part indicator=</u>"**00**" (bin)' to trigger BWP change from BWP2 to BWP1.
- 10. UE correctly decode the DCIs in BWP2 and succeed switch to BWP1.
- 11. Setup a TCP session with iperf and verify that UE downloads data correctly, keep the service for 30 seconds and verify the data transmission is performed successfully by using BWP1.
- 12. SS sends DCI-0_1 with field:'<u>Bandwidth part indicator="01"(bin)</u>' to trigger BWP change from BWP1 to BWP2.
- 13. UE correctly decode the DCIs in BWP1 and succeed switch to BWP2.
- 14. Setup a TCP session with iperf and verify that UE downloads data correctly, keep the service for 30 seconds and verify the data transmission is performed successfully by using BWP2.
- 15. SS sends DCI-0_1 with field:'<u>Bandwidth part indicator="10"(bin)</u>' to trigger BWP change from BWP2 to BWP3.
- 16. UE correctly decode the DCIs in BWP2 and succeed switch to BWP3.
- 17. Setup a TCP session with iperf and verify that UE downloads data correctly, keep the service for 30 seconds and verify the data transmission is performed successfully by using BWP3.
- SS sends DCI-0_1 with field: <u>'Bandwidth part indicator="11"(bin)</u>' to trigger BWP change from BWP3 to BWP4.
- 19. UE correctly decode the DCIs in BWP3 and succeed switch to BWP4.
- 20. Setup a TCP session with iperf and verify that UE downloads data correctly, keep the service for 30 seconds and verify the data transmission is performed successfully by using BWP4.

POSTAMBLE

- 21. SS initiates a de-registration procedure.
- 22. The SS initiates a RRC release procedure.
- 23. Deactivate NR Cell A.

5.9.2.6 Expected Result

- 1. Check and verify UE could perform BWP switch to BWP#1 by DCI on step #10
- 2. Check and record PDSCH_Througput achieved in step #11
- 3. Check and verify UE could perform BWP siwtch to BWP#2 by DCI on step #13

- 4. Check and record PDSCH_Througput achieved in step #14
- 5. Check and verify UE could perform BWP siwtch to BWP#3 by DCI on step #16
- 6. Check and record PDSCH_Througput achieved in step #17.
- 7. Check and verify UE could perform BWP siwtch to BWP#4 by DCI on step #19
- 8. Check and record PDSCH_Througput achieved in step #20

6 Mobility

6.1 Intra-system (NR) Mobility

6.1.1 Intra-system cell reselection

6.1.1.1 Cell Reselection and Random Access Procedure

6.1.1.1.1 Test Purpose

When UE camps on one NR cell, based on cell selection criteria, UE correctly reselects and camp on intra-freq/inter-freq/inter-band cell, and Verify the UE will correctly choose PRACH PREAMBLE.

6.1.1.1.2 Reference specification

3GPP TS 38.304 subclause 5.2.4 3GPP TS 38.211 subclause 6.3.3 3GPP TS 24.501 subclause 5.5

6.1.1.1.3 Applicability

This test applies to type 1 and 2 devices as described in clause 4.2.

6.1.1.1.4 Test conditions

[SS configuration] Cell A and Cell B are intra-freq cells Cell A and Cell C are inter-freq cells. Cell A and Cell D are inter-band cells.

NR Cell A Cell Id=1 TAC = 1 MCC = 460 MNC = 00 NR-ARFCN= f4 SS/PBCH SSS EPRE = -85 dBm/30kHz PRACH Configuration Index = 0(Preamble format 0)

Cell Id=2 TAC = 2 MCC = 460 MNC = 00 NR-ARFCN= f4 SS/PBCH SSS EPRE = -125 dBm/30kHz PRACH Configuration Index = 145(Preamble format B4)

NR Cell C Cell Id=3 TAC = 3 MCC = 460 MNC = 00 NR-ARFCN= f3 SS/PBCH SSS EPRE = -125 dBm/30kHz PRACH Configuration Index = 61(Preamble format 3)

NR Cell D Cell Id=4 TAC = 4 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -125 dBm/30kHz PRACH Configuration Index = 189(Preamble format C2)

[UE configuration] The test USIM shall be inserted. The UE is in AUTOMATIC network selection mode. UE works in SA mode.

[Initial conditions] SS NR Cell A is not active. NR Cell B is not active. NR Cell C is not active. NR Cell D is not active.

The test shall be performed under ideal radio conditions.

UE

UE is powered off

6.1.1.1.5 Test procedure

Time	NR Cell A	NR Cell B	NR Cell C	NR Cell D	Remark
то	-85	Not Active	Not Active	Not Active	
T1	-91	-85	Not Active	Not Active	

T2	Not Active	-91	-85	Not Active	
Т3	Not Active	Not Active	-91	-85	
T4	-85	Not Active	Not Active	-91	

PREAMBLE

- 1. Activate NR Cell A, NR Cell B, NR Cell C and NR Cell D.The SS configures the transmission of the Master Information Block and starts the System Information Block broadcasting on all cells.
- 2. The SS configures the initial power according to T0 in Table 6.1.1.1.5-1.
- 3. The UE is powered ON.
- 4. UE performs the registration procedure on Cell A according to subclause 5.4.1 step3-18.
- 5. The RRC connection is released by the SS.

MAIN BODY

- 6. The SS changes the cell power according to T1 in table 6.1.1.1.5-1.
- 7. The UE performs the registration procedure for mobility on Cell B.
- 8. The RRC connection is released by the SS. The UE enters Idle Mode.
- 9. The SS changes the cell power according to T2 in table 6.1.1.1.5-1.
- 10. The UE performs the registration procedure for mobility on Cell C.
- 11. The RRC connection is released by the SS. The UE enters Idle Mode.
- 12. The SS changes the cell power according to T3 in table 6.1.1.1.5-1.
- 13. UE performs the registration procedure for mobility on Cell D.
- 14. The RRC connection is released by the SS. The UE enters Idle Mode.
- 15. The SS changes the cell power according to T4 in table 6.1.1.1.5-1.
- 16. UE performs the registration procedure for mobility on Cell A.

POSTAMBLE

- 17. The SS initiates a de-registration procedure.
- 18. The SS initiates a RRC release procedure.
- 19. Deactivate NR Cell A, NR Cell B, NR Cell C and NR Cell D.

Step	Message Sequence			Verdict	
	U-S	Layer	Message	Specific Contents	
1	←	RRC	Activate NR Cell A, NR Cell B, NR Cell C, NR		
			Cell D		
2			Configure the initial power according to T0 in		
			Table 6.1.1.1.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure on		PASS
	←	RRC	Cell A according to subclause 5.4.1 step3-18		
5	÷	RRC	The RRC connection is released by the SS.		
6			The SS changes the cell power according to		

Table 5.1.1.5-2: Message Sequence

GTI 5G Function and Performance Test Specification v4.2 – September 2021

	1	1		1	
			T1 in table 6.1.1.1.5-1.		
7	\rightarrow	NAS	UE performs the registration procedure for		PASS
	←	RRC	mobility on Cell B		
8	←	RRC	The RRC connection is released by the SS.		
			The UE enters Idle Mode		
9			SS changes the cell power according to T2 in		
			table 6.1.1.1.5-1.		
10	\rightarrow	NAS	UE performs the registration procedure for		PASS
	÷	RRC	mobility on Cell C.		
11	←	RRC	The RRC connection is released by the SS.		
			The UE enters Idle Mode.		
12			The SS changes the cell power according to		
			T3 in table 6.1.1.1.5-1.		
13	\rightarrow	NAS	UE performs the registration procedure for		PASS
	←	RRC	mobility on Cell D.		
14	←	RRC	The RRC connection is released by the SS.		
			The UE enters Idle Mode.		
15			The SS changes the cell power according to		
			T4 in table 6.1.1.1.5-1.		
16	\rightarrow	NAS	UE performs the registration procedure for		PASS
	←	RRC	mobility on Cell A.		
17	\rightarrow	NAS	SS initiates a de-registration procedure.		PASS
	←				
18	←	RRC	The SS initiates a RRC release procedure		
19			Deactivate NR Cell A, NR Cell B, NR Cell C, NR		
			Cell D		

6.1.1.1.6 Expected Result

Verify the UE correctly reselect and camp on a serving cell with different preamble format.

6.1.2 Intra-system handover

6.1.2.1 Intra-freq HO with IP data transfer

6.1.2.1.1 Test Purpose

Execute handovers between two NR Intra-frequency neighbour cells with IP data transfer.

- 1), Perform non-contention based random access procedure and lossless handover.
- 2), Perform Contention based random access procedure and lossless handover.

Verify the UE is able to maintain the service.

6.1.2.1.2 Reference specification

3GPP TS 38.331 subclause 5.3.5 and 5.5

6.1.2.1.3 Applicability

This test applies to type 1 and 2 devices as described in clause 4.2.

6.1.2.1.4 Test conditions

[SS configuration] Cell A and Cell B are intra-freq NR cells.

NR Cell A Cell Id=1 TAC = 1 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -85 dBm/30kHz

NR Cell B Cell Id=2 TAC = 1 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -125 dBm/30kHz

[UE configuration] The test USIM shall be inserted. The UE is in AUTOMATIC network selection mode. UE works in SA mode.

[Initial conditions] SS NR Cell A is not active. NR Cell B is not active. The test shall be performed under ideal radio conditions.

UE UE is powered off .

6.1.2.1.5 Test procedure

Table 5.1.1.5-1: Time of cell power level and parameter changes

Time	NR Cell A	NR Cell B	Remark
T0 -85		Not Active	
T1	-91	-85	
T2	-85	-91	

PREAMBLE

1. Activate NR Cell A and NR Cell B.The SS configures the transmission of the Master

Information Block and starts the System Information Block broadcasting on all cells.

- 2. The SS configures the initial power according to T0 in Table 6.1.2.1.5-1.
- 3. The UE is powered ON.

MAIN BODY

- 4. The UE performs Registration procedure on NR Cell A according to subclause 5.4.1 step3-18. A3 measurement is configured in RRC CONNECTION RECONFIGURATION message.
- 5. Verify the data transmission is performed successfully on Cell A.
- 6. The SS changes the cell power according to T1 in table 6.1.2.1.5-1.
- 7. The UE performs measurements on the neighbor Cell B and provides measurement reports (Event A3) to the SS.
- 8. The SS initiates a handover to Cell B by sending a RRC CONNECTION RECONFIGURATION message. The RRC CONNECTION RECONFIGURATION message contains CFRA in RACH-ConfigDedicated in order to trigger non-contention based random access to the target cell. A3 measurement is configured in RRC CONNECTION RECONFIGURATION message. Cell B becomes the serving cell and Cell A becomes the new neighbor cell.
- 9. The UE completes the HO procedure by sending the RRC CONNECTION RECONFIGURATION COMPLETE message and proceeding CFRA procedure on target Cell B.
- 10. Verify the data transmission is continued on Cell B.
- 11. The SS changes the cell power according to T2 in table 6.1.2.1.5-1.
- 12. The UE performs measurements on the neighbor Cell A and provides measurement reports (Event A3) to the SS.
- 13. The SS initiates a handover to Cell A by sending a RRC CONNECTION RECONFIGURATION message. The RRC CONNECTION RECONFIGURATION message does not contain CFRA in RACH-ConfigDedicated in order to trigger contention based random access to the target cell. Cell A becomes the serving cell and Cell B becomes the new neighbor cell.
- 14. The UE completes the HO procedure by sending the RRC CONNECTION RECONFIGURATION COMPLETE message and proceeding CBRA procedure on target Cell A.
- 15. Verify the data transmission is continued on Cell A.

POSTAMBLE

- 16. SS initiates a de-registration procedure.
- 17. The SS initiates a RRC release procedure.
- 18. Deactivate NR Cell A and NR Cell B.

Step		Message Sequence				
	U-S	U-S Layer Message Spe		Specific Contents		
1	÷	RRC	SS Activates NR Cell A and NR Cell B			
2	SS configures the initial power according to T0 in					
			Table 6.1.2.1.5-1.			
3		UE	Switch On UE	AT Command		
4	\rightarrow	NAS	UE performs Registration procedure on NR Cell		PASS	
	÷	RRC	A according to subclause 5.4.1 step3-18. A3			

Table 5.1.1.5-2: Message Sequence

	r			
			measurement is configured in RRC CONNECTION	
			RECONFIGURATION message.	
5			Verify the data transmission is performed	PASS
			successfully on Cell A.	
6			SS changes the cell power according to T1 in	
			table 6.1.2.1.5-1.	
7	\rightarrow	RRC	UE performs measurements on the neighbor	PASS
			Cell B and provides measurement reports (Event	
			A3) to the SS.	
8	÷	RRC	SS initiates a handover by sending RRC	
			CONNECTION RECONFIGURATION message.	
9	\rightarrow	RRC	UE sends the RRC CONNECTION	PASS
			RECONFIGURATION COMPLETE message and	
			success CFRA procedure on target Cell B.	
10			Verify the data transmission is continued on Cell	PASS
			В.	
11			SS changes the cell power according to T2 in	
			table 6.1.2.1.5-1.	
12	\rightarrow	RRC	UE performs measurements on the neighbor	PASS
			Cell A and provides measurement reports (Event	
			A3) to the SS.	
13	÷	RRC	SS SS initiates a handover by sending RRC	
			CONNECTION RECONFIGURATION message.	
14	\rightarrow	RRC	UE sends the RRC CONNECTION	PASS
			RECONFIGURATION COMPLETE message and	
			success CBRA procedure on target Cell A.	
15			Verify the data transmission is continued on Cell	PASS
			Α.	
16	\rightarrow	NAS	SS initiates a de-registration procedure.	PASS
	←			
17	÷	RRC	SS initiates a RRC release procedure.	
18			Deactivate NR Cell A and NR Cell B.	

6.1.2.1.6 Expected Result

Verify the UE can perform the handover procedure with non-contention based random access procedure successfully.

Verify the UE can perform the handover procedure with contention based random access procedure successfully.

6.1.2.2 Inter-freq HO with IP data transfer

6.1.2.2.1 Test Purpose

Execute handovers between NR Inter-frequency neighbour cells with IP data transfer.

1) Perform non-contention based random access procedure and lossless handover.

2) Perform Contention based random access procedure and lossless handover.

Verify that the UE supports handover between cells with different bandwidth and is able to maintain the service.

6.1.2.2.2 Reference specification

3GPP TS 38.331 subclause 5.3.5 and 5.5

6.1.2.2.3 Applicability

This test applies to type 1 and 2 devices as described in clause 4.2.

6.1.2.2.4 Test conditions

[SS configuration] Cell A and Cell B are inter-freq NR cells

NR Cell A Cell Id=1 TAC = 1 MCC = 460 MNC = 00 Frequency Configuration = f1 SS/PBCH SSS EPRE = -125 dBm/30kHz

NR Cell B Cell Id=2 TAC = 1 MCC = 460 MNC = 00 Frequency Configuration = f2 SS/PBCH SSS EPRE = -125 dBm/30kHz

NR Cell C Cell Id=3 TAC = 1 MCC = 460 MNC = 00 Frequency Configuration = f3 SS/PBCH SSS EPRE = -125 dBm/30kHz

[UE configuration] The test USIM shall be inserted. The UE is in AUTOMATIC network selection mode. UE works in SA mode.

[Initial conditions] SS NR Cell A is not active. NR Cell B is not active. The test shall be performed under ideal radio conditions.

UE

UE is powered off.

6.1.2.2.5 Test procedure

Time	Parameter	Unit	NR Cell A	NR Cell B	NR Cell C	Remark
TO	SS/PBCH, SSS EPRE		-85	Not Active	Not Active	
T1		dDm /CCC	-97	-85	Not Active	
T2		dBm/SCS	-85	-97	Not Active	
Т3			-97	-97	-85	

Table 6.1.2.2.5-1: Time of cell power level and parameter changes

PREAMBLE

- 1. Activate NR Cell A. The SS configures the transmission of the Master Information Block and starts the System Information Block broadcasting on all cells.
- 2. The SS configures the initial power according to T0 in Table 6.1.2.2.5-1.
- 3. The UE is powered ON.

MAIN BODY

- 4. The UE performs Registration procedure on NR Cell A according to subclause 5.4.1 step3-18. A4 measurement is configured in RRC CONNECTION RECONFIGURATION message.
- 5. Verify the data transmission is performed successfully on Cell A.
- 6. Activate NR Cell B. The SS changes the cell power according to T1 in table 6.1.2.2.5-1.
- 7. The UE performs measurements on the neighbor Cell B and provides measurement reports (Event A4) to the SS.
- 8. The SS initiates a handover to Cell B by sending a RRC CONNECTION RECONFIGURATION message. The RRC CONNECTION RECONFIGURATION message contains CFRA in RACH-ConfigDedicated in order to trigger non-contention based random access to the target cell. Cell B becomes the serving cell and Cell A becomes the new neighbor cell. A4 measurement is configured in RRC CONNECTION RECONFIGURATION message.
- 9. The UE completes the HO procedure by sending the RRC CONNECTION RECONFIGURATION COMPLETE message and proceeding CFRA procedure on target Cell B.
- 10. Verify the data transmission is continued on Cell B.
- 11. The SS changes the cell power according to T2 in table 6.1.2.2.5-1.
- 12. The UE performs measurements on the neighbor Cell A and provides measurement reports (Event A4) to the SS.
- 13. The SS initiates a handover to Cell A by sending a RRC CONNECTION RECONFIGURATION message. The RRC CONNECTION RECONFIGURATION message does not contain CFRA in RACH-ConfigDedicated in order to trigger contention based random access to the target cell. Cell A becomes the serving cell and Cell B becomes the new neighbor cell.
- 14. The UE completes the HO procedure by sending the RRC CONNECTION RECONFIGURATION COMPLETE message and proceeding CBRA procedure on target Cell A.
- 15. Verify the data transmission is continued on Cell A.
- 16. Activate NR Cell C. The SS changes the cell power according to T3 in table 6.1.2.2.5-1.

- 17. The UE performs measurements on the neighbor Cell C and provides measurement reports (Event A4) to the SS.
- 18. The SS initiates a handover to Cell C by sending a RRC CONNECTION RECONFIGURATION message. Cell C becomes the serving cell and Cell A becomes the new neighbor cell. A4 measurement is configured in RRC CONNECTION RECONFIGURATION message.
- 19. The UE completes the HO procedure by sending the RRC CONNECTION RECONFIGURATION COMPLETE message and proceeding CFRA procedure on target Cell C.
- 20. Verify the data transmission is continued on Cell C.

POSTAMBLE

- 21. The SS initiates a de-registration procedure.
- 22. The SS initiates a RRC release procedure.
- 23. Deactivate NR Cell A and NR Cell B.

Step		Message Sequence			Verdict
	U-S	Layer	Message	Specific Contents	
1	÷	RRC	SS Activates NR Cell A and NR Cell B		
2			SS configures the initial power according to T0 in		
			Table 6.1.2.2.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs Registration procedure on NR Cell		PASS
	÷	RRC	A according to subclause 5.4.1 step3-18. A4		
			measurement is configured in RRC CONNECTION		
			RECONFIGURATION message.		
5			Data transmission is performed successfully on		PASS
			Cell A.		
6			SS changes the cell power according to T1 in		
			table 6.1.2.2.5-1.		
7	\rightarrow	RRC	UE performs measurements on the neighbor		PASS
			Cell B and provides measurement reports (Event		
			A4) to the SS.		
8	÷	RRC	SS initiates a handover by sending RRC		
			CONNECTION RECONFIGURATION message.		
9	\rightarrow	RRC	UE sends the RRC CONNECTION		PASS
			RECONFIGURATION COMPLETE message and		
			success CFRA procedure on target Cell B.		
10			Data transmission is continued on Cell B.		PASS
11			SS changes the cell power according to T2 in		
			table 6.1.2.2.5-1.		
12	\rightarrow	RRC	UE performs measurements on the neighbor		PASS
			Cell A and provides measurement reports (Event		
			A4) to the SS.		

Table 6.1.2.2.5-2: Message Sequence

GTI 5G Function and Performance Test Specification v4.2 – September 2021

13	←	RRC	SS SS initiates a handover by sending RRC	
15		NAC	, ,	
-			CONNECTION RECONFIGURATION message.	
14	\rightarrow	RRC	UE sends the RRC CONNECTION	PASS
			RECONFIGURATION COMPLETE message and	
			success CBRA procedure on target Cell A.	
15			Data transmission is continued on Cell A.	PASS
16			Activate NR Cell C. The SS changes the cell	
			power according to T3 in table 6.1.2.2.5-1.	
17			The UE performs measurements on the	
			neighbor Cell C and provides measurement	
			reports (Event A4) to the SS.	
18	÷		RRC CONNECTION RECONFIGURATION message.	
			A4 measurement is configured in RRC	
			CONNECTION RECONFIGURATION .	
19	\rightarrow	RRC	RRC CONNECTION RECONFIGURATION	
			COMPLETE message and proceeding CFRA	
			procedure on target Cell C.	
20			Data transmission is continued on Cell C	PASS
21	\rightarrow	NAS	SS initiates a de-registration procedure.	PASS
	←			
22	←	RRC	SS initiates a RRC release procedure.	
23			Deactivate NR Cell A and NR Cell B.	

6.1.2.2.6 Expected Result

Verify the UE can perform the handover procedure with non-contention based random access procedure successfully.

Verify the UE can perform the handover procedure with contention based random access procedure successfully.

6.1.2.3 Inter-Freq. HO Failure, RRC Connection Reestablish to a Prepared Inter-Freq cell

6.1.2.3.1 Test Purpose

DRB Setup with a Real Service Ongoing, Two Inter-frequency cells are prepared for handover. Handover to the target cell is failed. A successful RRC reestablish to a prepared Inter-frequency cell is performed. The test scenario is performed several times. Verify the UE is able to maintain the service.

6.1.2.3.2 Reference specification

3GPP TS 38.331 subclause 5.3.5, 5.3.7 and 5.5

6.1.2.3.3 Applicability

This test applies to type 1 and 2 devices as described in clause 4.2.

6.1.2.3.4 Test conditions

[SS configuration] Cell A , Cell B and Cell C are NR inter-freq cells. NR Cell A Cell Id=1 TAC = 1 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -85 dBm/30kHz(adjust according to Table 5.1.1.5-1) NR Cell B Cell Id=2 TAC = 1 MCC = 460 MNC = 00 NR-ARFCN= f2 SS/PBCH SSS EPRE = -125 dBm/30kHz(adjust according to Table 5.1.1.5-1) NR Cell C Cell Id=3 TAC = 1 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -125 dBm/30kHz(adjust according to Table 5.1.1.5-1) [UE configuration] The test USIM shall be inserted. The UE is in AUTOMATIC network selection mode. UE works in SA mode.

[Initial conditions] SS NR Cell A is not active. NR Cell B is not active. NR Cell C is not active. The test shall be performed under ideal radio conditions.

```
UE
UE is powered off
```

6.1.2.3.5 Test procedure

Time	Cell A	Cell B	Cell C	Remark
то	-85	Not Active	Not Active	
T1	-97	-85	Not Active	
T2	-97	Not Active	-85	

Table 5.1.1.5-1: Time of cell power level and parameter changes

Т3	Not Active	-85	-97	
T4	-85	Not Active	-97	

PREAMBLE

- 1. Activate NR Cell A, NR Cell B and NR Cell C.The SS configures the transmission of the Master Information Block and starts the System Information Block broadcasting on all cells.
- 2. The SS configures the initial power according to T0 in Table 6.1.2.3.5-1.
- 3. The UE is powered ON.

MAIN BODY

- 4. The UE performs Registration procedure on NR Cell A according to subclause 5.4.1 step3-18.
- 5. Verify the data transmission is performed successfully on Cell A.
- 6. The SS sends RRC Connection Reconfiguration message to setup inter-freq measurement (Event A4).
- 7. The UE sends RRC Connection Reconfiguration Complete message.
- 8. The SS changes the cell power according to T1 in table 6.1.2.3.5-1.
- 9. The UE performs measurements on the neighbor Cell B and provides measurement reports (Event A4) to the SS.
- 10. The SS changes the cell power according to T2 in table 6.1.2.3.5-1.
- 11. The SS sends an RRC Connection Reconfiguration message to order the UE to perform inter-freq handover from Cell A to Cell B.
- 12. The UE fails to perform the Handover as Cell B is not available.
- 13. The UE performs RRC Connection Reestablishment procedure on Cell C.
- 14. Verify the data transmission is continued after the connection reestablishment on Cell C.
- 15. The SS sends RRC Connection Reconfiguration message to setup inter-freq measurement (Event A4).
- 16. The UE sends RRC Connection Reconfiguration Complete message.
- 17. The SS changes the cell power according to T3 in table 6.1.2.3.5-1.
- 18. The UE performs measurements on the neighbor Cell B and provides measurement reports (Event A4) to the SS.
- 19. The SS changes the cell power according to T4 in table 6.1.2.3.5-1.
- 20. The SS sends an RRC Connection Reconfiguration message to order the UE to perform inter-freq handover from Cell C to Cell B.
- 21. The UE fails to perform the Handover as Cell B is not available.
- 22. The UE performs RRC Connection Reestablishment procedure on Cell A.
- 23. Verify the data transmission is continued after the connection reestablishment on Cell A.
- 24. Repeat steps 6 to 23 four times.

POSTAMBLE

- 25. The SS initiates a de-registration procedure.
- 26. The SS initiates a RRC release procedure.
- 27. Deactivate NR Cell A, NR Cell B and NR Cell C.

GTI 5G Function and Performance Test Specification v4.2 – September 2021

Step	Message Sequence		Verdict		
	U-S	Layer	Message	Specific Contents	
1	÷	RRC	Activate NR Cell A, NR Cell B and NR Cell C		
2			The SS configures the initial power according		
			to T0 in Table 6.1.2.3.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs Registration procedure on NR		PASS
	÷	RRC	Cell A according to subclause 5.4.1 step3-18.		
5			Verify the data transmission is performed		PASS
			successfully on Cell A.		
6	÷	RRC	SS sends RRC Connection Reconfiguration		
			message to setup inter-freq measurement		
			(Event A4).		
7	\rightarrow	RRC	UE sends RRC Connection Reconfiguration		PASS
			Complete message.		
8			SS changes the cell power according to T1 in		
			table 6.1.2.3.5-1		
9	\rightarrow	RRC	UE performs measurements on the neighbor		PASS
			Cell B and provides measurement reports		
			(Event A4) to the SS.		
10			SS changes the cell power according to T2 in		
			table 6.1.2.3.5-1.		
11	÷	RRC	SS sends an RRC Connection Reconfiguration		
			message to order the UE to perform		
			inter-freq handover from Cell A to Cell B.		
12			UE fails to perform the Handover as Cell B is		
			not available.		
13	\rightarrow	RRC	UE performs RRC Connection		PASS
	÷		Reestablishment procedure on Cell C.		
14			Verify the data transmission is continued		PASS
			after the connection reestablishment on Cell		
			С.		
15	÷	RRC	SS sends RRC Connection Reconfiguration		
			message to setup inter-freq measurement		
			(Event A4		
16	\rightarrow	RRC	UE sends RRC Connection Reconfiguration		PASS
			Complete message		
17			SS changes the cell power according to T3 in		
			table 6.1.2.3.5-1.		
18	\rightarrow	RRC	UE performs measurements on the neighbor		PASS
			Cell B and provides measurement reports		
			(Event A4) to the SS		
19			SS changes the cell power according to T4 in		
			table 6.1.2.3.5-1.		

GTI 5G Function and Performance Test Specification v4.2 – September 2021

20	←	RRC	SS sends an RRC Connection Reconfiguration	
			message to order the UE to perform	
			inter-freq handover from Cell C to Cell B.	
21			UE fails to perform the Handover as Cell B is	
			not available.	
22	\rightarrow	RRC	UE performs RRC Connection	PASS
	←		Reestablishment procedure on Cell A.	
23			Verify the data transmission is continued	PASS
			after the connection reestablishment on Cell	
			Α.	
24			Repeat steps 6 to 23 four times.	
25	\rightarrow	NAS	SS initiates a de-registration procedure.	PASS
	÷			
26	←	RRC	The SS initiates a RRC release procedure.	
27			Deactivate NR Cell A, NR Cell B and NR Cell C.	

6.1.2.3.6 Expected Result

Verify the UE can reestablish connection to an Inter-freq Cell after the inter-freq handover failure successfully.

Verify the UE can maintain the data transmission after the connection reestablishment. successfully.

6.1.2.4 Inter-band HO with IP data transfer

6.1.2.4.1 Test Purpose

Execute handovers between two NR Inter-band neighbour cells with IP data transfer.

1), Perform non-contention based random access procedure and lossless handover.

2), Perform Contention based random access procedure and lossless handover.

Verify the UE is able to maintain the service.

6.1.2.4.2 Reference specification

3GPP TS 38.331 subclause 5.3.5 and 5.5

6.1.2.4.3 Applicability

This test applies to type 1 and 2 devices as described in clause 4.2.

6.1.2.4.4 Test conditions

[SS configuration] Cell A and Cell B are inter-band NR cells

NR Cell A Cell Id=1 TAC = 1

MCC = 460 MNC = 00 SS/PBCH SSS EPRE = -125 dBm/30kHz

GT

NR Cell B Cell Id=2 TAC = 1 MCC = 460 MNC = 00 SS/PBCH SSS EPRE = -125 dBm/30kHz

[UE configuration] The test USIM shall be inserted. The UE is in AUTOMATIC network selection mode. UE works in SA mode.

[Initial conditions] SS NR Cell A is not active. NR Cell B is not active. The test shall be performed under ideal radio conditions.

UE UE is powered off.

Test Point	Cell	Test Band	Test Frequency
1	Cell A	n41	f1
	Cell B	n79	f1
2	Cell A	n41	f1
	Cell B	n28	f1
3	Cell A	n41	f1
	Cell B	n28	f2
Note:			
1.Each test point shou	Ild be tested as an indepe	endent test case.	
2. Check section 4.1.2	.1 for details of test frequ	iency	

6.1.2.4.5 Test procedure

Table 5.1.1.5-1: Time of cell power level and parameter changes

Time	NR Cell A	NR Cell B	Remark
то	-85	Not Active	
T1	-97	-85	
T2	-85	-97	

PREAMBLE

- 1. Activate NR Cell A and NR Cell B.The SS configures the transmission of the Master Information Block and starts the System Information Block broadcasting on all cells.
- 2. The SS configures the initial power according to T0 in Table 6.1.2.4.5-1.
- 3. The UE is powered ON.

MAIN BODY

- 4. The UE performs Registration procedure on NR Cell A according to subclause 5.4.1 step3-18. A4 measurement is configured in RRC CONNECTION RECONFIGURATION message.
- 5. Verify the data transmission is performed successfully on Cell A.
- 6. The SS changes the cell power according to T1 in table 6.1.2.4.5-1.
- 7. The UE performs measurements on the neighbor Cell B and provides measurement reports (Event A4) to the SS.
- 8. The SS initiates a handover to Cell B by sending a RRC CONNECTION RECONFIGURATION message. The RRC CONNECTION RECONFIGURATION message contains CFRA in RACH-ConfigDedicated in order to trigger non-contention based random access to the target cell. Cell B becomes the serving cell and Cell A becomes the new neighbor cell. A4 measurement is configured in RRC CONNECTION RECONFIGURATION message.
- 9. The UE completes the HO procedure by sending the RRC CONNECTION RECONFIGURATION COMPLETE message and proceeding CFRA procedure on target Cell B.
- 10. Verify the data transmission is continued on Cell B.
- 11. The SS changes the cell power according to T2 in table 6.1.2.4.5-1.
- 12. The UE performs measurements on the neighbor Cell A and provides measurement reports (Event A4) to the SS.
- 13. The SS initiates a handover to Cell A by sending a RRC CONNECTION RECONFIGURATION message. The RRC CONNECTION RECONFIGURATION message does not contain CFRA in RACH-ConfigDedicated in order to trigger contention based random access to the target cell. Cell A becomes the serving cell and Cell B becomes the new neighbor cell.
- 14. The UE completes the HO procedure by sending the RRC CONNECTION RECONFIGURATION COMPLETE message and proceeding CBRA procedure on target Cell A.
- 15. Verify the data transmission is continued on Cell A.

POSTAMBLE

- 16. The SS initiates a de-registration procedure.
- 17. The SS initiates a RRC release procedure.
- 18. Deactivate NR Cell A and NR Cell B.

Step		Message Sequence			Verdict
	U-S	Layer	Message	Specific Contents	
1	÷	RRC	SS Activates NR Cell A and NR Cell B		
2			SS configures the initial power according to		
			T0 in Table 6.1.2.4.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs Registration procedure on NR		PASS

Table 5.1.1.5-2: Message Sequence

					-
	←	RRC	Cell A according to subclause 5.4.1 step3-18.		
			A4 measurement is configured in RRC		
			CONNECTION RECONFIGURATION message.		
5			Verify the data transmission is performed	PASS	
			successfully on Cell A.		
6			SS changes the cell power according to T1 in		
			table 6.1.2.4.5-1.		
7	\rightarrow	RRC	UE performs measurements on the neighbor	PASS	
			Cell B and provides measurement reports		
			(Event A4) to the SS.		
8	←	RRC	SS initiates a handover by sending RRC		
			CONNECTION RECONFIGURATION message.		
9	\rightarrow	RRC	UE sends the RRC CONNECTION	PASS	
			RECONFIGURATION COMPLETE message and		
			success CFRA procedure on target Cell B.		
10			Verify the data transmission is continued on	PASS	
			Cell B.		
11			SS changes the cell power according to T2 in		
			table 6.1.2.4.5-1.		
12	\rightarrow	RRC	UE performs measurements on the neighbor	PASS	
			Cell A and provides measurement reports		
			(Event A4) to the SS.		
13	÷	RRC	SS initiates a handover by sending RRC		
			CONNECTION RECONFIGURATION message.		
14	\rightarrow	RRC	UE sends the RRC CONNECTION	PASS	
			RECONFIGURATION COMPLETE message and		
			success CBRA procedure on target Cell A.		
15			Verify the data transmission is continued on	PASS	
			Cell A.		
16	\rightarrow	NAS	SS initiates a de-registration procedure.	PASS	
	←				
17	←	RRC	SS initiates a RRC release procedure.		
18			Deactivate NR Cell A and NR Cell B.		

6.1.2.4.6 Expected Result

Verify the UE can perform the handover procedure with non-contention based random access procedure successfully.

Verify the UE can perform the handover procedure with contention based random access procedure successfully.

6.2 Inter-RAT Mobility

6.2.1 Inter-RAT cell reselection

6.2.1.1 Cell reselection, from NR cell to E-UTRAN cell

6.2.1.1.1 Test Purpose

UE could reselect from NR cell to E-UTRAN Cell and perform TAU.

6.2.1.1.2 Reference specification

TS 38.304, clause 5.2.4

6.2.1.1.3 Applicability

This test applies to type 1 and 2 devices as described in clause 4.2.

6.2.1.1.4 Test conditions

[SS configuration] Cell A is a NR cell, Cell B is an E-UTRAN cell.

NR Cell A Cell Id=1 TAC = 1 MCC = 460 MNC = 00 SS/PBCH SSS EPRE = -125 dBm/30kHz

E-UTRAN Cell B Cell Id=2 TAC = 2 MCC = 460 MNC = 00 rootSequenceIndex = 0 Reference Signal EPRE = -125 dBm/15kHz

[UE configuration] The test USIM shall be inserted. The UE is in AUTOMATIC network selection mode. UE works in SA mode.

[Initial conditions]SSNR Cell A is not active.E-UTRAN Cell B is not active.The test shall be performed under ideal radio conditions.

UE UE is powered off

Table 6.1.2.4-1: Test Configurations

Test Point Cell	Test Band	Test Frequency
-----------------	-----------	----------------

1	Cell A	n41	f1
	Cell B	B39	f1
2	Cell A	n28	f1
	Cell B	B3	f1
3	Cell A	n28	f2
	Cell B	B3	f1

2. Check section 4.1.2.1 for details of test frequency

6.2.1.1.5 Test procedure

Table 5.1.1.5-1: Time of	cell nower level and	narameter changes
	cell power level and	parameter changes

Time	NR Cell A	E-UTRAN Cell B	Remark
то	-85	Not Active	
T1	-97	-85	

PREAMBLE

- 1. Activate NR Cell A and E-UTRAN Cell B. The SS configures the transmission of the Master Information Block and starts the System Information Block broadcasting on all cells.
- 2. The SS configures the initial power according to T0 in Table 6.2.1.1.5-1.
- 3. The UE is powered ON.

MAIN BODY

- 4. The UE performs the registration procedure on Cell A according to subclause 5.4.1 step3-18.
- 5. Verify the data transmission is performed successfully on Cell A.
- 6. The RRC connection is released by the SS.
- 7. The SS changes the cell power according to T1 in table 6.2.1.1.5-1.
- 8. The UE performs TAU and EPS bearer activation in E-UTRAN Cell B.
- 9. Verify the data transmission is performed successfully on E-UTRAN Cell B.

POSTAMBLE

- 10. The SS initiates a DETACH procedure.
- 11. The SS initiates a RRC release procedure.
- 12. Deactivate NR Cell A and E-UTRAN Cell B.

Step		Message Sequence			
	U-S	Layer	Message	Specific Contents	
1	÷	RRC	SS Activates NR Cell A and E-UTRAN Cell B		
2		SS configures the initial power according to			
			T0 in Table 6.2.1.1.5-1.		
3		UE	Switch On UE	AT Command	

Table 5.1.1.5-2: Message Sequence

GTI 5G Function and Performance Test Specification v4.2 – September 2021

4	\rightarrow	NAS	UE performs the registration procedure on	PASS
4	-			FA33
	+	RRC	Cell A according to subclause 5.4.1 step3-18.	
5			Verify the data transmission is performed	PASS
			successfully on Cell A.	
6	÷	RRC	The RRC connection is released by the SS.	
7			SS changes the cell power according to T1 in	
			table 6.2.1.1.5-1	
8	\rightarrow	NAS	UE performs TAU and EPS bearer activation	PASS
	÷	RRC	on E-UTRAN Cell B.	
9			Verify the data transmission is performed	PASS
			successfully on E-UTRAN Cell B.	
10	\rightarrow	NAS	SS initiates a DETACH procedure.	PASS
	←			
11	←	RRC	SS initiates a RRC release procedure.	
12			Deactivate NR Cell A and E-UTRAN Cell B.	

6.2.1.1.6 Expected Result

Verify the UE could reselect from NR cell to E-UTRAN Cell.

6.2.1.2 Cell reselection, from E-UTRAN cell to NR cell

6.2.1.2.1 Test Purpose

UE could reselect from E-UTRAN Cell to NR cell and perform registration procedure for mobolity.

6.2.1.2.2 Reference specification

TS 36.304, clause 5.2.4

6.2.1.2.3 Applicability

This test applies to type 1 and 2 devices as described in clause 4.2.

6.2.1.2.4 Test conditions

[SS configuration] Cell A and Cell B are E-UTRAN Cells, Cell C is a NR cell. Cell B and Cell C are neighbor cells of Cell A

E-UTRAN Cell A Cell Id=1 TAC = 1 MCC = 460 MNC = 00 rootSequenceIndex = 0 Reference Signal EPRE = -85 dBm/15kHz

E-UTRAN Cell B

Cell Id=2 TAC = 2 MCC = 460 MNC = 00 rootSequenceIndex = 0 Reference Signal EPRE = -125 dBm/15kHz

NR Cell C Cell Id=3 TAC = 3 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -125 dBm/30kHz

[UE configuration] The test USIM shall be inserted. The UE is in AUTOMATIC network selection mode. UE works in SA mode.

[Initial conditions]
SS
E-UTRAN Cell A is not active.
E-UTRAN Cell B is not active.
NR Cell C is not active.
The test shall be performed under ideal radio conditions.

UE

UE is powered off

Test Point	Cell	Test Band	Test Frequency
1	Cell A	B39	f1
	Cell B	B39	f2
	Cell C	n41	f1
2	Cell A	B3	f1
	Cell B	В3	f2
	Cell C	n28	f1
3	Cell A	B3	f1
	Cell B	В3	f2
	Cell C	n28	f2

Table 6.2.1.2.4-1: Test Configurations

1.Each test point should be tested as an independent test case.

2. Check section 4.1.2.1 for details of test frequency

6.2.1.2.5 Test procedure

Time	E-UTRAN Cell A	E-UTRAN Cell B	NR Cell C	Remark
TO	-85	-91	Not Active	
T1	-97	-85	-85	

PREAMBLE

- 1. Activate E-UTRAN Cell A, E-UTRAN Cell B and NR Cell C.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 6.2.1.2.5-1.
- 3. The UE is powered ON.

MAIN BODY

- 4. The UE performs the registration procedure with activation of the initial default EPS bearer on Cell A (see 36.508, 4.5.2).
- 5. Verify the data transmission is performed successfully on E-UTRAN Cell A.
- 6. The RRC connection is released by the SS.
- 7. The SS changes cell power according to T1 in table 6.2.1.2.5-1.
- 8. UE performs the registration procedure for mobility on NR Cell C according to subclause 5.4.1 step3-18.
- 9. Verify the data transmission is performed successfully on NR Cell C.

POSTAMBLE

- 10. The SS initiates a de-registration procedure.
- 11. The SS initiates a RRC release procedure.
- 12. Deactivate E-UTRAN Cell A, E-UTRAN Cell B and NR Cell C.

			- .		
Step			Message Sequence	1	Verdict
	U-S	Layer	Message	Specific Contents	
1	←	RRC	Activate E-UTRAN Cell A, E-UTRAN Cell B and		
			NR Cell C.		
2			SS configures the initial power according to		
			T0 in Table 6.2.1.2.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure with		PASS
	÷	RRC	activation of the initial default EPS bearer on		
			Cell A (see 36.508, 4.5.2).		
5			Verify the data transmission is performed		PASS
			successfully on E-UTRAN Cell A.		
6	÷	RRC	The RRC connection is released by the SS.		
7			SS changes the cell power according to T1 in		
			table 6.2.1.2.5-1		
8	\rightarrow	NAS	UE performs the registration procedure for		PASS
	÷	RRC	mobility on NR Cell C according to subclause		

Table 5.1.1.5-2: Message Sequence

			5.4.1 step3-18.	
9			Verify the data transmission is performed	PASS
			successfully on NR Cell C.	
10	\rightarrow	NAS	SS initiates a de-registration procedure.	PASS
	←			
11	←	RRC	SS initiates a RRC release procedure.	
12			Deactivate E-UTRAN Cell A, E-UTRAN Cell B	
			and NR Cell C.	

6.2.1.2.6 Expected Result

Verify the UE could reselect from E-UTRAN cell to NR Cell.

6.2.1.3 Cell reselection, from NR cell to E-UTRAN cell with NSA cell exists

6.2.1.3.1. Test Purpose

UE could reselect from NR cell to E-UTRAN Cell perform TAU.

6.2.1.3.2. Reference specification

TS 38.304, clause 5.2.4

6.2.1.3.3. Applicability

This test applies to type 1 and 2 devices as described in clause 4.2.

6.2.1.3.4. Test conditions

[SS configuration] E-UTRAN Cell A and Cell B are TD-LTE cells, Cell C and Cell D are NR cells. Cell A and Cell B and Cell D are neighbor cells of Cell C

E-UTRAN Cell A Cell Id=1 TAC = 1 MCC = 460 MNC = 00 E-UTRA Band = 41 EARFCN= f1 rootSequenceIndex TDD = 0 Reference Signal EPRE = -125 dBm/15kHz

E-UTRAN Cell B Cell Id=2 TAC = 2 MCC = 460 MNC = 00 E-UTRA Band = 41 EARFCN= f2 rootSequenceIndex TDD = 0

Reference Signal EPRE = -125 dBm/15kHz

NR Cell C Cell Id=3 TAC = 3 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -85 dBm/30kHz

NR Cell D Cell Id=4 TAC = 4 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -125 dBm/30kHz

[UE configuration] The test USIM shall be inserted. The UE is in AUTOMATIC network selection mode. UE works in NSA mode.

[Initial conditions] SS E-UTRAN Cell A is not active. E-UTRAN Cell B is not active. NR Cell C is not active. NR Cell D is not active.

The test shall be performed under ideal radio conditions.

UE UE is powered off

6.2.1.3.5. Test procedure

Time	E-UTRAN Cell A	E-UTRAN Cell B	NR Cell C	NR Cell D
то	"Not Active"	"Not Active"	-85	"Not Active"
T1	-85	-91	-97	-91

Table 5.1.1.5-1: Time of cell power level and parameter changes

PREAMBLE

- 1. Activate E-UTRAN Cell A, E-UTRAN Cell B, NR Cell C and NR Cell D.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 6.2.1.3.5-1.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure on Cell C (see 38.508, Table 4.5.2.2 till Step 18).

122

MAIN BODY

- 5. SS configures the E-UTRAN Cell B(NSA P-Cell) is barred.
- 6. The SS changes cell power according to T1 in table 6.2.1.3.5-1.
- 7. UE performs the TAU procedure for mobility on E-UTRAN Cell A.

POSTAMBLE

- 1. The UE is powered OFF.
 - 9. Deactivate E-UTRAN Cell A, E-UTRAN Cell B, NR Cell C and NR Cell D.

Step			Message Sequence		Verdict
	U-S	Layer	Message	Specific Contents	
1	÷	RRC	Activate E-UTRAN Cell A, E-UTRAN Cell B, NR		
			Cell C and NR Cell D.		
2			SS configures the initial power according to		
			T0 in Table 6.2.1.3.5-1		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	The UE performs the registration procedure		PASS
	←	RRC	on Cell C (see 38.508, Table 4.5.2.2 till Step		
			18)		
5			SS configures the E-UTRAN Cell B(NSA P-Cell)		
			is barred		
6			The SS changes cell power according to T1 in		
			table 6.2.1.3.5-1.		
7	\rightarrow	NAS	UE performs the TAU procedure for mobility		PASS
	←		on E-UTRAN Cell A		
8			The UE is powered OFF		
9			Deactivate E-UTRAN Cell A, E-UTRAN Cell B,		
			NR Cell C and NR Cell D		

6.2.1.3.6. Expected Result

Step 4 UE selects the E-UTRAN Cell A and camps on the Cell A..

Step 7 UE performs the TAU procedure for mobility on E-UTRAN Cell A.

6.2.1.4. Cell reselection, from E-UTRAN cell to NR cell with NSA cell exists

6.2.1.4.1. Test Purpose

UE could reselect from E-UTRAN cell to NR Cell and perform registration procedure for mobolity.

6.2.1.4.2. Reference specification

TS 36.304, clause 5.2.4

6.2.1.4.3. Applicability

This test applies to type 1 and 2 devices as described in clause 4.2.

6.2.1.4.4. Test conditions

[SS configuration] E-UTRAN Cell A and Cell B are TD-LTE cells, Cell C and Cell D are NR cells. Cell B and Cell C and Cell D are neighbor cells of Cell A NR Cell C is higher priority than E-UTRAN Cell B.

E-UTRAN Cell A Cell Id=1 TAC = 1 MCC = 460 MNC = 00 E-UTRA Band = 39 EARFCN= f1 rootSequenceIndex TDD = 0 Reference Signal EPRE = -85 dBm/15kHz

E-UTRAN Cell B Cell Id=2 TAC = 2 MCC = 460 MNC = 00 E-UTRA Band = 39 EARFCN= f2 rootSequenceIndex TDD = 0 Reference Signal EPRE = -125 dBm/15kHz

NR Cell C Cell Id=3 TAC = 3 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -125 dBm/30kHz

NR Cell D Cell Id=4 TAC = 4 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -125 dBm/30kHz

[UE configuration] The test USIM shall be inserted. The UE is in AUTOMATIC network selection mode. UE works in SA mode.

[Initial conditions]

SS

E-UTRAN Cell A is not active. E-UTRAN Cell B is not active. NR Cell C is not active. NR Cell D is not active.

The test shall be performed under ideal radio conditions.

UE

UE is powered off

6.2.1.4.5. Test procedure

Table 5 1 1 5-1. Time	of cell nower leve	l and parameter changes
	or cen power ieve	i unu purunicici chunges

Time	E-UTRAN Cell A	E-UTRAN Cell B	NR Cell C	NR Cell D
то	-85	"Not Active"	"Not Active"	"Not Active"
T1	-97	-91	-85	-91

PREAMBLE

- 1. Activate E-UTRAN Cell A, E-UTRAN Cell B, NR Cell C and NR Cell D.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 6.2.1.4.5-1.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure with activation of the initial default EPS bearer on Cell A (see 36.508, 4.5.2).

MAIN BODY

- 5. The SS changes cell power according to T1 in table 6.2.1.4.5-1.
- 6. UE performs the registration procedure for mobility on NR Cell C.

POSTAMBLE

- 7. The UE is powered OFF.
- 8. Deactivate E-UTRAN Cell A, E-UTRAN Cell B, NR Cell C and NR Cell D.

Step	Message Sequence			Verdict	
	U-S	Layer	Message	Specific Contents	
1	←	RRC	Activate E-UTRAN Cell A, E-UTRAN Cell B, NR		
			Cell C and NR Cell D.		
2			SS configures the initial power according to		
			T0 in Table 6.2.1.4.5-1		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	The UE performs the registration procedure		PASS

Table 5.1.1.5-2: Message Sequence

GTI 5G Function and Performance Test Specification v4.2 – September 2021

	÷	RRC	with activation of the initial default EPS	
			bearer on Cell A (see 36.508, 4.5.2).	
5			The SS changes cell power according to T1 in	
			table 6.2.1.4.5-1.	
6	\rightarrow	NAS	UE performs the registration procedure for	PASS
	÷		mobility on NR Cell C.	
7			The UE is powered OFF	
8			Deactivate E-UTRAN Cell A, E-UTRAN Cell B,	
			NR Cell C and NR Cell D	

6.2.1.4.6. Expected Result

Step 4 UE selects the E-UTRAN Cell A and camps on the Cell A. Step 6 UE performs the registration procedure for mobility on NR Cell C

6.2.1.5. Cell reselection, from NR cell to NSA P-Cell

6.2.1.5.1. Test Purpose

UE could reselect from NR Cell to NSA P-Cell and performs TAU then setup NSA PS-Cell

6.2.1.5.2. Reference specification

TS 38.304, clause 5.2.4

6.2.1.5.3. Applicability

This test applies to type 1 devices as described in clause 4.2.

6.2.1.5.4. Test conditions

[SS configuration] E-UTRAN Cell A and Cell B are TD-LTE cells, Cell C and Cell D are NR cells. Cell A and Cell B and Cell D are neighbor cells of Cell C

E-UTRAN Cell A Cell Id=1 TAC = 1 MCC = 460 MNC = 00 E-UTRA Band = 41 EARFCN= f1 rootSequenceIndex TDD = 0 Reference Signal EPRE = -125 dBm/15kHz

E-UTRAN Cell B Cell Id=2 TAC = 2

MCC = 460 MNC = 00 E-UTRA Band = 39 EARFCN= f1 rootSequenceIndex TDD = 0 Reference Signal EPRE = -125 dBm/15kHz

NR Cell C Cell Id=3 TAC = 3 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -85 dBm/30kHz

NR Cell D Cell Id=4 TAC = 4 MCC = 460 MNC = 00 NR-ARFCN= f1z SS/PBCH SSS EPRE = -125 dBm/30kHz

[UE configuration] The test USIM shall be inserted. The UE is in AUTOMATIC network selection mode. UE works in NSA mode.

[Initial conditions] SS E-UTRAN Cell A is not active. E-UTRAN Cell B is not active. NR Cell C is not active. NR Cell D is not active.

The test shall be performed under ideal radio conditions.

UE UE is powered off

6.2.1.5.5. Test procedure

Time	E-UTRAN Cell A	E-UTRAN Cell B	NR Cell C	NR Cell D
то	"Not Active"	"Not Active"	-85	"Not Active"
T1	-91	-85	-97	-91

PREAMBLE

1. Activate E-UTRAN Cell A, E-UTRAN Cell B, NR Cell C and NR Cell D.The SS configures the

corresponding Master Information Block and System Information Block broadcast.

- 2. The SS configures the initial power according to T0 in Table 6.2.1.5.5-1.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure on Cell C (see 38.508, Table 4.5.2.2 till Step 18).

MAIN BODY

- 5. The SS changes cell power according to T1 in table 6.2.1.5.5-1.
- 6. UE performs the TAU procedure for mobility on E-UTRAN Cell B.
- 7. The SS transmits an RRCConnectionReconfiguration message containing NR RRCReconfiguration message to add NR PS-Cell.
- 8. UE transmit an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.

POSTAMBLE

- 9. The UE is powered OFF.
- 10. Deactivate E-UTRAN Cell A, E-UTRAN Cell B, NR Cell C and NR Cell D.

Step			Message Sequence		Verdict
	U-S	Layer	Message	Specific	
				Contents	
1	÷	RRC	Activate E-UTRAN Cell A, E-UTRAN Cell B, NR Cell C and		
			NR Cell D.		
2			SS configures the initial power according to TO in Table		
			6.2.1.4.5-1		
3		UE	Switch On UE	AT	
				Command	
4	\rightarrow	NAS	The UE performs the registration procedure with		PASS
	÷	RRC	activation of the initial default EPS bearer on Cell A (see		
			36.508, 4.5.2).		
5			The SS changes cell power according to T1 in table		
			6.2.1.4.5-1.		
6	\rightarrow	NAS	UE performs the TAU procedure for mobility on		PASS
	←		E-UTRAN Cell B.		
7	÷	RRC	The SS transmits an RRCConnectionReconfiguration		PASS
			message containing NR RRCReconfiguration message to		
			add NR PS-Cell D.		
8	\rightarrow	RRC	UE transmit an		PASS
			RRCConnectionReconfigurationComplete message		
			containing NR RRCReconfigurationComplete message.		
9			The UE is powered OFF		
10			Deactivate E-UTRAN Cell A, E-UTRAN Cell B, NR Cell C		
			and NR Cell D		

Table 5.1.1.5-2: Message Sequence

6.2.1.5.6. Expected Result

Step 4 UE selects the E-UTRAN Cell A and camps on the Cell A.

Step 6 UE performs the TAU procedure for mobility on E-UTRAN Cell B.

Step7 The SS transmits an RRCConnectionReconfiguration message containing NR RRCReconfiguration message to add NR PS-Cell D.

Step8 UE transmit an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.

6.2.1.6. Cell reselection, from NSA P-Cell to NR cell

6.2.1.6.1. Test Purpose

UE could reselect from NSA P-Cell to NR Cell and perform registration procedure for mobolity.

6.2.1.6.2. Reference specification

TS 36.304, clause 5.2.4

6.2.1.6.3. Applicability

This test applies to type 1 devices as described in clause 4.2.

6.2.1.6.4. Test conditions

[SS configuration] E-UTRAN Cell A and Cell B are TD-LTE cells, Cell C and Cell D are NR cells. Cell A and Cell C and Cell D are neighbor cells of Cell B NR Cell C is higher priority than E-UTRAN Cell A.

```
E-UTRAN Cell A
Cell Id=1 TAC = 1
MCC = 460 MNC = 00
E-UTRA Band = 41
EARFCN= f1
rootSequenceIndex TDD = 0
Reference Signal EPRE = -125 dBm/15kHz
```

```
E-UTRAN Cell B
Cell Id=2 TAC = 2
MCC = 460 MNC = 00
E-UTRA Band = 39
EARFCN= f1
rootSequenceIndex TDD = 0
Reference Signal EPRE = -85 dBm/15kHz
```


Cell Id=3 TAC = 3 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -125 dBm/30kHz

NR Cell D Cell Id=4 TAC = 4 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -91 dBm/30kHz

[UE configuration] The test USIM shall be inserted. The UE is in AUTOMATIC network selection mode. UE works in SA mode.

[Initial conditions] SS E-UTRAN Cell A is not active. E-UTRAN Cell B is not active. NR Cell C is not active. NR Cell D is not active.

The test shall be performed under ideal radio conditions.

UE

UE is powered off

6.2.1.6.5. Test procedure

Time	E-UTRAN Cell A	E-UTRAN Cell B	NR Cell C	NR Cell D
то	"Not Active"	-85	"Not Active"	-91
T1	-91	-97	-85	-97

PREAMBLE

- 1. Activate E-UTRAN Cell A, E-UTRAN Cell B, NR Cell C and NR Cell D.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 6.2.1.6.5-1.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure with activation of the initial default EPS bearer on Cell B (see 36.508, 4.5.2).

MAIN BODY

5. The SS changes cell power according to T1 in table 6.2.1.6.5-1.

6. UE performs the registration procedure for mobility on NR Cell C.

POSTAMBLE

- 7. The UE is powered OFF.
- 8. Deactivate E-UTRAN Cell A, E-UTRAN Cell B, NR Cell C and NR Cell D.

Step			Message Sequence		Verdict
	U-S	Layer	Message	Specific Contents	
1	←	RRC	Activate E-UTRAN Cell A, E-UTRAN Cell B, NR		
			Cell C and NR Cell D.		
2			SS configures the initial power according to		
			T0 in Table 6.2.1.4.5-1		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	The UE performs the registration procedure		PASS
	÷	RRC	with activation of the initial default EPS		
			bearer on Cell B (see 36.508, 4.5.2).		
5			The SS changes cell power according to T1 in		
			table 6.2.1.4.5-1.		
6	\rightarrow	NAS	UE performs the registration procedure for		PASS
	÷		mobility on NR Cell C.		
7			The UE is powered OFF		
8			Deactivate E-UTRAN Cell A, E-UTRAN Cell B,		
I			NR Cell C and NR Cell D		

6.2.1.6.6. Expected Result

Step 4 UE selects the E-UTRAN Cell A and camps on the Cell A Step 6 UE performs the registration procedure for mobility on NR Cell C.

6.2.2 Inter-RAT Handover

6.2.2.1 Inter-RAT Handover from NR to E-UTRAN cell

6.2.2.1.1 Test Purpose

Setup a real PS service (e.g. streaming). The UE executes handovers from NR cell to E-UTRAN cell multi-times. Verify the UE is able to maintain the service.

6.2.2.1.2 Reference specification

3GPP TS 38.331 subclause 5.4 and 5.5 3GPP TS 36.331 subclause 5.4 and 5.5

6.2.2.1.3 Applicability

This test applies to type 1 and 2 devices as described in clause 4.2.

6.2.2.1.4 Test conditions

[SS configuration] Cell A is a NR cell, Cell B is an E-UTRAN cell.

NR Cell A Cell Id=1 TAC = 1 MCC = 460 MNC = 00 SS/PBCH SSS EPRE = -125 dBm/30kHz

E-UTRAN Cell B Cell Id=2 TAC = 1 MCC = 460 MNC = 00 rootSequenceIndex = 0 Reference Signal EPRE = -125 dBm/15kHz

[UE configuration] The test USIM shall be inserted. The UE is in AUTOMATIC network selection mode. UE works in SA mode.

[Initial conditions]SSNR Cell A is not active.E-UTRAN Cell B is not active.The test shall be performed under ideal radio conditions.

UE

UE is powered off

Test Point	Cell	Test Band	Test Frequency
1	Cell A	n41	f1
	Cell B	B39	f1
2	Cell A	n28	f1
	Cell B	B3	f1
3	Cell A	n28	f2
	Cell B	В3	f1

1.Each test point should be tested as an independent test case.

2. Check section 4.1.2.1 for details of test frequency

6.2.2.1.5 Test procedure

Time	NR Cell A	E-UTRAN Cell B	Remark
то	-85	Not Active	
T1	-97	-85	
T2	-85	-91	

Table 5.1.1.5-1: Time of cell power level and parameter changes

PREAMBLE

- 1. Activate NR Cell A and E-UTRAN Cell B.The SS configures the transmission of the Master Information Block and starts the System Information Block broadcasting on all cells.
- 2. The SS configures the initial power according to T0 in Table 6.2.2.1.5-1.
- 3. The UE is powered ON.

MAIN BODY

- 4. The UE performs Registration procedure on NR Cell A according to subclause 5.4.1 step3-18.
- 5. Verify the data transmission is performed successfully on Cell A.
- 6. The SS sends RRC Connection Reconfiguration message to setup inter-RAT measurement (Event B2).
- 7. The UE sends RRC Connection Reconfiguration Complete message.
- 8. The SS changes the cell power according to T1 in table 6.2.2.1.5-1.
- 9. The UE performs measurements on the neighbor Cell B and provides measurement reports (Event B2) to the SS.
- 10. The SS sends an RRC Connection Reconfiguration message to order the UE to perform inter-RAT handover from NR Cell A to E-UTRAN Cell B.
- 11. The UE completes the HO procedure by sending the RRC CONNECTION RECONFIGURATION COMPLETE message on target E-UTRAN Cell B.
- 12. Verify the data transmission is continued on E-UTRAN Cell B.
- 13. The SS sends RRC Connection Reconfiguration message to setup inter-RAT measurement (Event B2).
- 14. The UE sends RRC Connection Reconfiguration Complete message.
- 15. The SS changes the cell power according to T2 in table 6.2.2.1.5-1.
- 16. The UE performs measurements on the neighbor NR Cell A and provides measurement reports (Event B2) to the SS.
- 17. The SS sends an RRC Connection Reconfiguration message to order the UE to perform inter-RAT handover from E-UTRAN Cell B to NR Cell A.
- The UE completes the HO procedure by sending the RRC CONNECTION RECONFIGURATION COMPLETE message on target Cell A.
- 19. Verify the data transmission is continued on NR Cell A.
- 20. Repeat steps 6 to 19 four times.

POSTAMBLE

- 21. The SS initiates a de-registration procedure.
- 22. The SS initiates a RRC release procedure.

23. Deactivate NR Cell A and E-UTRAN Cell B.

Step	Message Sequence		Verdict		
	U-S	U-S Layer Message		Specific Contents	
1	÷	RRC	SS Activates NR Cell A and E-UTRAN Cell B.		
2			SS configures the initial power according to		
			T0 in Table 6.2.2.1.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs Registration procedure on NR		PASS
	←	RRC	Cell A according to subclause 5.4.1 step3-18.		
5			Verify the data transmission is performed		PASS
			successfully on Cell A.		
6	÷	RRC	SS sends RRC Connection Reconfiguration		
			message to setup inter-RAT measurement		
			(Event B2).		
7	\rightarrow	RRC	UE sends RRC Connection Reconfiguration		PASS
			Complete message.		
8			SS changes the cell power according to T1 in		
			table 6.2.2.1.5-1.		
9	\rightarrow	RRC	UE performs measurements on the neighbor		PASS
			Cell B and provides measurement reports		
			(Event B2) to the SS.		
10	←	RRC	SS sends an RRC Connection Reconfiguration		
			message to order the UE to perform		
			inter-RAT handover from NR Cell A to		
			E-UTRAN Cell B.		
11	\rightarrow	RRC	UE completes the HO procedure by sending		PASS
			the RRC CONNECTION RECONFIGURATION		
			COMPLETE message on target E-UTRAN Cell		
			В.		
12			Verify the data transmission is continued on		PASS
	-		Cell B.		
13	←	RRC	SS sends RRC Connection Reconfiguration		
			message to setup inter-RAT measurement		
			(Event B2).		
14	\rightarrow	RRC	UE sends RRC Connection Reconfiguration		PASS
			Complete message.		
15			SS changes the cell power according to T2 in		
			table 6.2.2.1.5-1.		
16	\rightarrow	RRC	UE performs measurements on the neighbor		PASS
			NR Cell A and provides measurement reports		
			(Event B2) to the SS.		

Table 5.1.1.5-2: Message Sequence

GTI 5G Function and Performance Test Specification v4.2 – September 2021

17	←	RRC	SS sends an RRC Connection Reconfiguration	
			message to order the UE to perform	
			inter-RAT handover from E-UTRAN Cell B to	
			NR Cell A.	
18	\rightarrow	RRC	UE completes the HO procedure by sending	PASS
			the RRC CONNECTION RECONFIGURATION	
			COMPLETE message on target Cell A.	
19			Verify the data transmission is continued on	PASS
			Cell A.	
20			Repeat steps 6 to 19 four times.	
21	\rightarrow	NAS	SS initiates a de-registration procedure.	PASS
	←			
22	←	RRC	SS initiates a RRC release procedure.	
23			Deactivate NR Cell A and E-UTRAN Cell B.	

6.2.2.1.6 Expected Result

Verify the UE can perform the inter-RAT handover procedure successfully.

6.2.3 Inter-RAT Redirection Service

6.2.3.1 Data Session continuity, Inter-RAT Redirection from NR to E-UTRAN

6.2.3.1.1 Test Purpose

While the UE is in an active PS data session on a NR cell, it is capable of successfully re-establishing its active data session when it receives an RRC Release and a redirect to a specific E-UTRAN cell.

6.2.3.1.2 Reference specification

3GPP TS 38.331 subclause 5.3.8

6.2.3.1.3 Applicability

This test applies to type 1 and 2 devices as described in clause 4.2.

6.2.3.1.4 Test conditions

[SS configuration] Cell A is a NR cell, Cell B is an E-UTRAN cell.

NR Cell A Cell Id=1 TAC = 1 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -85 dBm/30kHz

E-UTRAN Cell B Cell Id=2 TAC = 2 MCC = 460 MNC = 00 EARFCN= f1 rootSequenceIndex = 0 Reference Signal EPRE = -125 dBm/15kHz

[UE configuration] The test USIM shall be inserted. The UE is in AUTOMATIC network selection mode. UE works in SA mode.

[Initial conditions]SSNR Cell A is not active.E-UTRAN Cell B is not active.The test shall be performed under ideal radio conditions.

UE UE is powered off

6.2.3.1.5 Test procedure

Table 5.1.1.5-1: Time of cell power level and parameter change	S
--	---

Time	NR Cell A	E-UTRAN Cell B	Remark
то	-85	Not Active	
T1	-97	-85	

PREAMBLE

- 1. Activate NR Cell A and E-UTRAN Cell B.The SS configures the transmission of the Master Information Block and starts the System Information Block broadcasting on all cells.
- 2. The SS configures the initial power according to T0 in Table 6.2.3.1.5-1.
- 3. The UE is powered ON.

MAIN BODY

- 4. UE performs the registration procedure on Cell A according to subclause 5.4.1 step3-18.
- 5. Verify the data transmission is performed successfully on Cell A.
- 6. The SS changes the cell power according to T1 in table 6.2.3.1.5-1.
- 7. The SS releases the RRC connection on NR Cell A, RRCConnectionRelease message should include redirectedCarrierInfo IE with ARFCN of E-UTRAN Cell B.
- 8. The UE performs Routing Area Update procedure and then PDP context establishment in E-UTRAN Cell B.
- 9. Verify the data transmission is continued successfully on E-UTRAN Cell B.

POSTAMBLE

- 10. The SS initiates a DETACH procedure.
- 11. The SS initiates a RRC release procedure.
- 12. Deactivate NR Cell A and E-UTRAN Cell B.

			0 1		
Step	Message Sequence		Verdict		
	U-S	Layer	Message	Specific Contents	
1	←	RRC	SS Activates NR Cell A and E-UTRAN Cell B		
2			SS configures the initial power according to		
			T0 in Table 6.2.3.1.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure on		PASS
	←	RRC	Cell A according to subclause 5.4.1 step3-18.		
5			Verify the data transmission is performed		PASS
			successfully on Cell A.		
6			SS changes the cell power according to T1 in		
			table 6.2.3.1.5-1.		
7	←	RRC	SS releases the RRC connection on NR Cell A,		
			RRCConnectionRelease message should		
			include redirectedCarrierInfo IE with ARFCN		
			of E-UTRAN Cell B.		
8	\rightarrow	NAS	UE performs Routing Area Update procedure		PASS
	÷	RRC	and then PDP context establishment in		
			E-UTRAN Cell B.		
9			Verify the data transmission is continued		PASS
			successfully on E-UTRAN Cell B.		
10	\rightarrow	NAS	SS initiates a DETACH procedure.		PASS
	←				
11	←	RRC	SS initiates a RRC release procedure.		
12			Deactivate NR Cell A and E-UTRAN Cell B.		

6.2.3.1.6 Expected Result

Verify the UE could redirect from NSA P-Cell to E-UTRAN Cell.

6.2.3.2 Data Session continuity, Inter-RAT Redirection from E-UTRAN to NR

6.2.3.2.1 Test Purpose

While the UE is in an active PS data session on a E-UTRAN cell, it is capable of successfully re-establishing its active data session when it receives an RRC Release and a redirect to a specific NR cell.

6.2.3.2.2 Reference specification

3GPP TS 36.331 subclause 5.3.8

6.2.3.2.3 Applicability

This test applies to type 1 and 2 devices as described in clause 4.2.

6.2.3.2.4 Test conditions

[SS configuration] Cell A is an E-UTRAN cell, Cell B is a NR cell. Cell B is the neighbor cell of Cell A.

E-UTRAN Cell A Cell Id=1 TAC = 1 MCC = 460 MNC = 00 rootSequenceIndex = 0 Reference Signal EPRE = -85 dBm/15kHz

NR Cell B Cell Id=2 TAC = 2 MCC = 460 MNC = 00 SS/PBCH SSS EPRE = -125 dBm/30kHz

[UE configuration] The test USIM shall be inserted. The UE is in AUTOMATIC network selection mode. UE works in SA mode.

[Initial conditions]SSE-UTRAN Cell A is not active.NR Cell B is not active.The test shall be performed under ideal radio conditions.

UE

UE is powered off

Test Point	Cell	Test Band	Test Frequency
1	Cell A	B39	f1
	Cell B	n41	f1
2	Cell A	B3	f1
	Cell B	n28	f1

Table 6.2.3.2.4-1: Test Configurations

GTI 5G Function and Performance Test Specification v4.2 – September 2021

3	Cell A	B3	f1
	Cell B	n28	f2
Note:			

1.Each test point should be tested as an independent test case.

2. Check section 4.1.2.1 for details of test frequency

6.2.3.2.5 Test procedure

Table 5.1.1.5-1:	Time of cell pow	ver level and para	ameter changes
10010 0.1111.0 11	mile of een poin	iei ieiei ana para	annever enanges

Time	E-UTRAN Cell A	NR Cell B	Remark
то	-85	Not Active	
T1	-97	-85	

PREAMBLE

- 1. Activate E-UTRAN Cell A and NR Cell B.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 6.2.3.2.5-1.
- 3. The UE is powered ON.

MAIN BODY

- 4. The UE performs the registration procedure with activation of the initial default EPS bearer on Cell A (see 36.508, 4.5.2).
- 5. Verify the data transmission is performed successfully on E-UTRAN Cell A.
- 6. The SS changes cell power according to T1 in table 6.2.3.2.5-1.
- 7. The SS releases the RRC connection on E-UTRAN Cell A, RRCConnectionRelease message should include redirectedCarrierInfo IE with CarrierInfoNR of NR Cell B.
- 8. The UE performs the registration procedure for mobility on NR Cell B according to subclause 5.4.1 step3-18.
- 9. Verify the data transmission is performed successfully on NR Cell B.

POSTAMBLE

- 10. The SS initiates a Detach procedure.
- 11. The SS initiates a RRC release procedure.
- 12. Deactivate E-UTRAN Cell A and NR Cell B.

Step		Message Sequence			Verdict
	U-S	Layer	Message	Specific Contents	
1	÷	RRC	Activate E-UTRAN Cell A and NR Cell B.		
2			SS configures the initial power according to		
			T0 in Table 6.2.3.2.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure with		PASS

Table 5.1.1.5-2: Message Sequence

GTI 5G Function and Performance Test Specification v4.2 – September 2021

	←	DDC	activation of the initial default EDC because on	
	~	RRC	activation of the initial default EPS bearer on	
			Cell A (see 36.508, 4.5.2).	
5			Verify the data transmission is performed	PASS
			successfully on E-UTRAN Cell A.	
6			SS changes cell power according to T1 in	
			table 6.2.3.2.5-1.	
7	←	RRC	SS releases the RRC connection on E-UTRAN	
			Cell A, RRCConnectionRelease message	
			should include redirectedCarrierInfo IE with	
			CarrierInfoNR of NR Cell B.	
8	\rightarrow	NAS	UE performs the registration procedure for	PASS
	←	RRC	mobility on NR Cell B according to subclause	
			5.4.1 step3-18.	
9			Verify the data transmission is performed	PASS
			successfully on NR Cell B.	
10	\rightarrow	NAS	SS initiates a de-registration procedure.	PASS
	÷			
11	÷	RRC	SS initiates a RRC release procedure.	
12			Deactivate E-UTRAN Cell A and NR Cell B.	

6.2.3.2.6 Expected Result

Verify the UE could redirect from E-UTRAN Cell to NSA P-Cell.

6.3 NSA

6.3.1 Cell Reselection, from NSA P-Cell to E-UTRAN cell

6.3.1.1 Test Purpose

UE could reselect from NSA P-Cell to E-UTRAN Cell. UE works in 4G mode.

6.3.1.2 Reference specification

TS 36.304, clause 5.2.4

6.3.1.3 Applicability

This test applies to the device that supports NSA or SA+NSA.

6.3.1.4 Test conditions

[SS configuration] CellA and Cell B are E-UTRAN Cells, CellC is a NR Cell. Cell A supports NSA, Cell B is a Neighbor Cell of Cell A.

E-UTRAN Cell A Cell Id=01 TAC = 01 MCC-MNC = 460-00 EARFCN= f1 rootSequenceIndex = 0 Reference Signal EPRE= -85 dBm/15kHz upperLayerIndication-r15=true

GTI

E-UTRAN Cell B Cell Id=02 TAC = 02 MCC-MNC = 460-00 EARFCN= f2 rootSequenceIndex = 8 Reference Signal EPRE= -125 dBm/15kHz

NR Cell C Cell Id=03 TAC = 01 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -125 dBm/30kHz

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in NSA mode.

[Initial conditions]

SS

E-UTRAN Cell A is not active

E-UTRAN Cell B is not active

NR Cell C is not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

6.3.1.5 Test procedure

Time	E-UTRAN Cell A	E-UTRAN Cell B	NR Cell C	Remark
т0	-85	Not Active	-90	
T1	-90	-85	-90	

PREAMBLE

- 20. Activate E-UTRAN Cell A,E-UTRAN Cell B and NR Cell C.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 21. The SS configures the initial power according to T0 in Table 6.3.1.5-1.
- 22. The UE is powered ON.

MAIN BODY

- 23. The UE performs the registration procedure with activation of the initial default EPS bearer on Cell A (see 36.508, 4.5.2).
- 24. The SS sends an ue-CapabilityRequest including the RAT type "eutra-nr".
- 25. Verify the UE sends UECapabilityInformation message including the RAT type "eutra-nr".
- 26. The SS sends an RRCConnectionReconfiguration message containing NR RRCReconfiguration message to add Cell C as NR PS-Cell with Split DRB. RRCConnectionReconfiguration message contains the ACTIVATE DEDICATED EPS BEARER CONTEXT REQUEST message.
- 27. The UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.
- 28. The UE sends an ULInformationTransfer message containing the ACTIVATE DEDICATED EPS BEARER CONTEXT ACCEPT message.
- 29. Verify the data transmission is performed successfully on NR Cell C.
- 30. The RRC connection is released by the SS.
- 31. The SS changes cell power according to T1 in table 6.3.1.5-1.
- 32. The UE performs TRACKING AREA UPDATE on Cell B.
- 33. Verify the data transmission is performed successfully on E-UTRAN Cell B.

POSTAMBLE

- 34. The SS initiates a Detach procedure.
- 35. The SS initiates a RRC release procedure.
- 36. Deactivate E-UTRAN Cell A, E-UTRAN Cell B and NR Cell C.

Step	Message Sequence		Verdict		
	U-S	Layer	Message	Specific Contents	
1	÷	RRC	Activate E-UTRAN Cell A, E-UTRAN Cell B and		
			NR Cell C.		
2			SS configures the initial power according to		
			T0 in Table 6.3.1.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure with		PASS
	÷	RRC	activation of the initial default EPS bearer on		
			Cell A (see 36.508, 4.5.2).		
5	÷	RRC	The SS sends an ue-CapabilityRequest		
			including the RAT type "eutra-nr".		
6	\rightarrow	RRC	Verify the UE sends UECapabilityInformation		PASS
			message including the RAT type "eutra-nr".		
7	÷	NAS	SS sends an RRCConnectionReconfiguration		

Table 6.3.1.55.1.1.5-2: Message Sequence

GTI 5G Function and Performance Test Specification v4.2 – September 2021

		1		1
		RRC	message containing NR RRCReconfiguration	
			message to add Cell C as NR PS-Cell with Split	
			DRB. RRCConnectionReconfiguration	
			message contains the ACTIVATE DEDICATED	
			EPS BEARER CONTEXT REQUEST message.	
8	\rightarrow	RRC	UE sends an	PASS
			RRCConnectionReconfigurationComplete	
			message containing NR	
			RRCReconfigurationComplete message.	
9	\rightarrow	NAS	UE sends an ULInformationTransfer message	PASS
		RRC	containing the ACTIVATE DEDICATED EPS	
			BEARER CONTEXT ACCEPT message	
10			Verify the data transmission is performed	PASS
			successfully on NR Cell C.	
11	÷	RRC	The RRC connection is released by the SS.	
12			SS changes cell power according to T1 in	
			table 6.3.1.5-1.	
13	\rightarrow	NAS	UE performs TRACKING AREA UPDATE on Cell	PASS
	÷	RRC	В.	
14			Verify the data transmission is performed	PASS
			successfully on E-UTRAN Cell B.	
15	\rightarrow	NAS	SS initiates a Detach procedure.	PASS
	÷			
16	~	RRC	SS initiates a RRC release procedure.	
17			Deactivate E-UTRAN Cell A,E-UTRAN Cell B	
			and NR Cell C.	
	•			• •

6.3.1.6 Expected Result

Verify the UE could reselect from NSA P-Cell to E-UTRAN Cell.

6.3.2 Cell Reselection, from E-UTRAN cell to NSA P-Cell

6.3.2.1 Test Purpose

UE could reselect from E-UTRAN Cell to NSA P-Cell. Initial UL data trasfer, UE report NSA capability then SCG PS-Cell establishment

6.3.2.2 Reference specification

TS 36.304, clause 5.2.4

6.3.2.3 Applicability

This test applies to the device that supports NSA or SA+NSA.

6.3.2.4 Test conditions

GTI

[SS configuration] CellA and Cell B are E-UTRAN Cells, CellC is a NR Cell. Cell B supports NSA, it is a Neighbor Cell of Cell A.

E-UTRAN Cell A Cell Id=01 TAC = 01 MCC-MNC = 460-00

EARFCN= f2 rootSequenceIndex = 0 Reference Signal EPRE= -85 dBm/15kHz

E-UTRAN Cell B Cell Id=02 TAC = 02 MCC-MNC = 460-00 EARFCN= f1 rootSequenceIndex = 8 Reference Signal EPRE= -125 dBm/15kHz upperLayerIndication-r15=true

NR Cell C Cell Id=03 TAC = 02 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -125 dBm/30kHz

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in NSA mode.

[Initial conditions]

SS

E-UTRAN Cell A is not active E-UTRAN Cell B is not active NR Cell C is not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

6.3.2.5 Test procedure

Table 6.3.2.55.1.1.5-1: Time of cell power level and parameter changes

Time	Cell A	Cell B	Cell C	Remark
т0	-85	Not Active	Not Active	
T1	-91	-85	-94	

PREAMBLE

- 1. Activate E-UTRAN Cell A,E-UTRAN Cell B and NR Cell C.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 6.3.2.5-1.
- 3. The UE is powered ON.

MAIN BODY

- 4. The UE performs the registration procedure with activation of the initial default EPS bearer on Cell A (see 36.508, 4.5.2).
- 5. The SS sends an ue-CapabilityRequest including the RAT type "eutra-nr".
- 6. Verify the UE sends UECapabilityInformation message including the RAT type "eutra-nr".
- 7. Verify the data transmission is performed successfully on E-UTRAN Cell A.
- 8. The RRC connection is released by the SS.
- 9. The SS changes cell power according to T1 in table 6.3.2.5-1.
- 10. The UE performs TRACKING AREA UPDATE on Cell B.
- 11. The SS sends an RRCConnectionReconfiguration message containing NR RRCReconfiguration message to add Cell C as NR PS-Cell with Split DRB. RRCConnectionReconfiguration message contains the ACTIVATE DEDICATED EPS BEARER CONTEXT REQUEST message.
- 12. The UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.
- 13. The UE sends an ULInformationTransfer message containing the ACTIVATE DEDICATED EPS BEARER CONTEXT ACCEPT message.
- 14. Verify the data transmission is performed successfully on NR Cell C.

POSTAMBLE

- 15. The SS initiates a Detach procedure.
- 16. The SS initiates a RRC release procedure.
- 17. Deactivate E-UTRAN Cell A, E-UTRAN Cell B and NR Cell C.

Step	Message Sequence			Verdict	
	U-S	Layer	Message	Specific Contents	
1	÷	RRC	Activate E-UTRAN Cell A, E-UTRAN Cell B and		
			NR Cell C.		
2			SS configures the initial power according to		
			T0 in Table 6.3.2.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure with		PASS
	÷	RRC	activation of the initial default EPS bearer on		

Table 5.1.1.5-2: Message Sequence

GTI 5G Function and Performance Test Specification v4.2 – September 2021

			Cell A (see 36.508, 4.5.2).	
5	÷	RRC	The SS sends an ue-CapabilityRequest	
			including the RAT type "eutra-nr".	
6	\rightarrow	RRC	Verify the UE sends UECapabilityInformation	PASS
			message including the RAT type "eutra-nr".	
7			Verify the data transmission is performed	PASS
			successfully on E-UTRAN Cell A.	
8	÷	RRC	The RRC connection is released by the SS.	
9			SS changes cell power according to T1 in	
			table 6.3.2.5-1.	
10	\rightarrow	NAS	UE performs TRACKING AREA UPDATE on Cell	PASS
	←	RRC	В.	
11	÷	NAS	SS sends an RRCConnectionReconfiguration	
		RRC	message containing NR RRCReconfiguration	
			message to add Cell C as NR PS-Cell with Split	
			DRB. RRCConnectionReconfiguration	
			message contains the ACTIVATE DEDICATED	
			EPS BEARER CONTEXT REQUEST message.	
12	\rightarrow	RRC	UE sends an	PASS
			RRCConnectionReconfigurationComplete	
			message containing NR	
			RRCReconfigurationComplete message.	
13	\rightarrow	NAS	UE sends an ULInformationTransfer message	PASS
		RRC	containing the ACTIVATE DEDICATED EPS	
			BEARER CONTEXT ACCEPT message	
14			Verify the data transmission is performed	PASS
			successfully on NR Cell C.	
15	\rightarrow	NAS	SS initiates a Detach procedure.	PASS
	\			
16	←	RRC	SS initiates a RRC release procedure.	
17			Deactivate E-UTRAN Cell A,E-UTRAN Cell B	
			and NR Cell C.	

6.3.2.6 Expected Result

Verify the UE could reselect from E-UTRAN Cell to NSA P-Cell.

6.3.3 P-Cell Handover with SCG change, Data continuity

6.3.3.1 Test Purpose

Setup a real PS service (e.g. streaming). The UE perform P-Cell-P-Cell handover with SCG change.

6.3.3.2 Reference specification

3GPP TS 36.331 subclause 5.3.5

3GPP TS 38.331 subclause 5.3.5

6.3.3.3 Applicability

This test applies to the device that supports NSA or SA+NSA.

6.3.3.4 Test conditions

[SS configuration] CellA and Cell B are E-UTRAN Cells, CellC and Cell D are NR Cells. Cell A and Cell B supports NSA.

E-UTRAN Cell A Cell Id=01 TAC = 01 MCC-MNC = 460-00 Frequency Configuration = f1 rootSequenceIndex = 0 Reference Signal EPRE= -85 dBm/15kHz upperLayerIndication-r15=true

E-UTRAN Cell B Cell Id=02 TAC = 02 MCC-MNC = 460-00 Frequency Configuration = f2 rootSequenceIndex = 8 Reference Signal EPRE= -85 dBm/15kHz upperLayerIndication-r15=true

NR Cell C Cell Id=03 TAC = 01 MCC = 460 MNC = 00 Frequency Configuration = f1 SS/PBCH SSS EPRE = -125 dBm/30kHz

NR Cell D Cell Id=04 TAC = 02 MCC = 460 MNC = 00 Frequency Configuration = f2 SS/PBCH SSS EPRE = -125 dBm/30kHz

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in NSA mode.

[Initial conditions]

SS

E-UTRAN Cell A is not active E-UTRAN Cell B is not active NR Cell C is not active NR Cell D is not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

6.3.3.5 Test procedure

Table 6.3.3.5-1: Time	of cell nowe	havel and	narameter change	c
Table 0.5.5.5-1. Time	oi celi powei	level allu	parameter changes	5

Time	E-UTRAN Cell A	E-UTRAN Cell B	NR Cell C	NR Cell D	Remark
Т0	-85	Not Active	-94	Not Active	
T1	-91	-85	-100	-94	

PREAMBLE

- 1. Activate E-UTRAN Cell A, E-UTRAN Cell B, NR Cell C and NR Cell D.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 5.1.1.5-1.
- 3. The UE is powered ON.

MAIN BODY

- 4. The UE performs the registration procedure with activation of the initial default EPS bearer on Cell A (see 36.508, 4.5.2).
- 5. The SS sends an ue-CapabilityRequest including the RAT type "eutra-nr".
- 6. Verify the UE sends UECapabilityInformation message including the RAT type "eutra-nr".
- 7. The SS sends an RRCConnectionReconfiguration message containing NR RRCReconfiguration message to add Cell C as NR PS-Cell with Split DRB. RRCConnectionReconfiguration message contains the ACTIVATE DEDICATED EPS BEARER CONTEXT REQUEST message.
- 8. The UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.
- 9. The UE sends an ULInformationTransfer message containing the ACTIVATE DEDICATED EPS BEARER CONTEXT ACCEPT message.
- 10. Verify the data transmission is performed successfully on NR Cell C.
- 11. The SS changes cell power according to T1 in table 6.3.3.5-1.
- 12. The SS sends an RRCConnectionReconfiguration message containing mobilityControlInfo to handover to E-UTRA Cell B and NR RRCReconfiguration message to perform SCG change with reconfigurationWithSync on Cell D.
- 13. The UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.
- 14. The UE performs TRACKING AREA UPDATE on Cell B.

15. Verify the data transmission is performed successfully on NR Cell D.

POSTAMBLE

- 16. The SS initiates a Detach procedure.
- 17. The SS initiates a RRC release procedure.
- 18. Deactivate E-UTRAN Cell A, E-UTRAN Cell B, NR Cell C and NR Cell D.

Step			Message Sequence		Verdict
	U-S	Layer	Message	Specific	
				Contents	
1	÷	RRC	Activate E-UTRAN Cell A, E-UTRAN Cell B, NR Cell		
			C and NR Cell D.		
2			SS configures the initial power according to TO in		
			Table 6.3.3.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure with		PASS
	←	RRC	activation of the initial default EPS bearer on Cell		
			A (see 36.508, 4.5.2).		
5	÷	RRC	The SS sends an ue-CapabilityRequest including		
			the RAT type "eutra-nr".		
6	\rightarrow	RRC	Verify the UE sends UECapabilityInformation		PASS
			message including the RAT type "eutra-nr".		
7	←	NAS	SS sends an RRCConnectionReconfiguration		
		RRC	message containing NR RRCReconfiguration		
			message to add Cell C as NR PS-Cell with Split		
			DRB. RRCConnectionReconfiguration message		
			contains the ACTIVATE DEDICATED EPS BEARER		
			CONTEXT REQUEST message.		
8	\rightarrow	RRC	UE sends an		PASS
			RRCConnectionReconfigurationComplete message		
			containing NR RRCReconfigurationComplete		
			message.		
9	\rightarrow	NAS	UE sends an ULInformationTransfer message		PASS
		RRC	containing the ACTIVATE DEDICATED EPS BEARER		
			CONTEXT ACCEPT message		
10			Verify the data transmission is performed		PASS
			successfully on NR Cell C.		
11			The SS changes cell power according to T1 in table		
			6.3.3.5-1.		
12	÷	RRC	SS sends an RRCConnectionReconfiguration		
			message containing mobilityControlInfo to		
			handover to E-UTRA Cell B and NR		

Table	633	\$ 5-2.	Message	Sequence
lable	0.5.5	o.j-∠.	iviessage	Sequence

GTI 5G Function and Performance Test Specification v4.2 – September 2021

			RRCReconfiguration message to perform SCG change with reconfigurationWithSync on Cell D	
13	<i>→</i>	RRC	UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.	PASS
14	$\rightarrow \\ \leftarrow$	NAS RRC	The UE performs TRACKING AREA UPDATE on Cell B.	PASS
15			Verify the data transmission is continued successfully on NR Cell D.	
16	$\rightarrow \\ \leftarrow$	NAS	SS initiates a Detach procedure.	PASS
17	←	RRC	SS initiates a RRC release procedure.	
18			Deactivate E-UTRAN Cell A, E-UTRAN Cell B, NR Cell C and NR Cell D.	

6.3.3.6 Expected Result

Verify the data transmission is continued after handover.

6.3.4 P-Cell Handover with SCG unchange, Data continuity

6.3.4.1 Test Purpose

Setup a real PS service (e.g. streaming). The UE perform P-Cell-P-Cell handover with SCG remains the same.

6.3.4.2 Reference specification

3GPP TS 36.331 subclause 5.3.5 3GPP TS 38.331 subclause 5.3.5

6.3.4.3 Applicability

This test applies to the device that supports NSA or SA+NSA.

6.3.4.4 Test conditions

[SS configuration] CellA and Cell B are E-UTRAN Cells, CellC is a NR Cell. Cell A and Cell B supports NSA.

E-UTRAN Cell A Cell Id=01 TAC = 01 MCC-MNC = 460-00 EARFCN= f1 rootSequenceIndex = 0

Reference Signal EPRE= -85 dBm/15kHz upperLayerIndication-r15=true

E-UTRAN Cell B Cell Id=02 TAC = 01 MCC-MNC = 460-00 EARFCN= f2 rootSequenceIndex = 8 Reference Signal EPRE= -85 dBm/15kHz upperLayerIndication-r15=true

NR Cell C Cell Id=03 TAC = 01 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -125 dBm/30kHz

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in NSA mode.

```
[Initial conditions]
```

SS

E-UTRAN Cell A is not active E-UTRAN Cell B is not active NR Cell C is not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

6.3.4.5 Test procedure

		•		
Time	E-UTRAN Cell A	E-UTRAN Cell B	NR Cell C	Remark
то	-85	Not Active	-94	
T1	-91	-85	-94	

Table 5.1.1.5-1: Time of cell power level and parameter changes

PREAMBLE

- 1. Activate E-UTRAN Cell A,E-UTRAN Cell B and NR Cell C.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 6.3.4.5-1.
- 3. The UE is powered ON.

MAIN BODY

- 4. The UE performs the registration procedure with activation of the initial default EPS bearer on Cell A (see 36.508, 4.5.2).
- 5. The SS sends an ue-CapabilityRequest including the RAT type "eutra-nr".
- 6. Verify the UE sends UECapabilityInformation message including the RAT type "eutra-nr".
- The SS sends an RRCConnectionReconfiguration message containing NR RRCReconfiguration message to add Cell C as NR PS-Cell with Split DRB. RRCConnectionReconfiguration message contains the ACTIVATE DEDICATED EPS BEARER CONTEXT REQUEST message.
- 8. The UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.
- 9. The UE sends an ULInformationTransfer message containing the ACTIVATE DEDICATED EPS BEARER CONTEXT ACCEPT message.
- 10. Verify the data transmission is performed successfully on NR Cell C.
- 11. The SS changes cell power according to T1 in table 6.3.4.5-1.
- 12. The SS sends an RRCConnectionReconfiguration message containing mobilityControlInfo to handover to E-UTRA Cell B and SCG remains the same.
- 13. The UE sends an RRCConnectionReconfigurationComplete message.
- 14. Verify the data transmission is continued successfully on NR Cell C.

POSTAMBLE

- 15. The SS initiates a Detach procedure.
- 16. The SS initiates a RRC release procedure.
- 17. Deactivate E-UTRAN Cell A, E-UTRAN Cell B and NR Cell C.

Step			Message Sequence		Verdict
	U-S	Layer	Message	Specific Contents	-
1	←	RRC	Activate E-UTRAN Cell A, E-UTRAN Cell B and		
			NR Cell C.		
2			SS configures the initial power according to		
			T0 in Table 6.3.4.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure with		PASS
	÷	RRC	activation of the initial default EPS bearer on		
			Cell A (see 36.508, 4.5.2).		
5	÷	RRC	The SS sends an ue-CapabilityRequest		
			including the RAT type "eutra-nr".		
6	\rightarrow	RRC	Verify the UE sends UECapabilityInformation		PASS
			message including the RAT type "eutra-nr".		
7	÷	NAS	SS sends an RRCConnectionReconfiguration		
		RRC	message containing NR RRCReconfiguration		
			message to add Cell C as NR PS-Cell with Split		
			DRB. RRCConnectionReconfiguration		
			message contains the ACTIVATE DEDICATED		

GTI 5G Function and Performance Test Specification v4.2 – September 2021

			EPS BEARER CONTEXT REQUEST message.	
8	\rightarrow	RRC	UE sends an	PASS
			RRCConnectionReconfigurationComplete	
			message containing NR	
			RRCReconfigurationComplete message.	
9	\rightarrow	NAS	UE sends an ULInformationTransfer message	PASS
		RRC	containing the ACTIVATE DEDICATED EPS	
			BEARER CONTEXT ACCEPT message	
10			Verify the data transmission is performed	PASS
			successfully on NR Cell C.	
11			The SS changes cell power according to T1 in	
			table 6.3.4.5-1.	
12	÷	RRC	SS sends an RRCConnectionReconfiguration	
			message containing mobilityControlInfo to	
			handover to E-UTRA Cell B and SCG remains	
			the same.	
13	\rightarrow	RRC	UE sends an	
			RRCConnectionReconfigurationComplete	
			message.	
14			Verify the data transmission is continued	PASS
			successfully on NR Cell C.	
15	\rightarrow	NAS	SS initiates a Detach procedure.	PASS
	←			
16	←	RRC	SS initiates a RRC release procedure.	
17			Deactivate E-UTRAN Cell A,E-UTRAN Cell B	
			and NR Cell C.	

6.3.4.6 Expected Result

Verify the data transmission is continued after handover.

6.3.5 Data Session continuity, from NSA cell to E-UTRAN cell

6.3.5.1 Test Purpose

While the UE is in an active PS data session on a NSA PS-Cell, UE can keep data transmission continuity after releasing of NSA PS-Cell and handover from NSA P-Cell to E-UTRAN cell.

6.3.5.2 Reference specification

3GPP TS 36.331 subclause 5.3.5 3GPP TS 38.331 subclause 5.3.5

6.3.5.3 Applicability

This test applies to the device that supports NSA or SA+NSA.

6.3.5.4 Test conditions

[SS configuration] CellA and Cell B are inter-band E-UTRAN Cells, CellC is a NR Cell. Cell A supports NSA, Cell B is a 4G only Neighbor Cell of Cell A.

E-UTRAN Cell A Cell Id=01 TAC = 01 MCC-MNC = 460-00 EARFCN= f1 rootSequenceIndex = 0 Reference Signal EPRE= -85 dBm/15kHz upperLayerIndication-r15=true

E-UTRAN Cell B

Cell Id=02 TAC = 02 MCC-MNC = 460-00 EARFCN= f1 rootSequenceIndex = 8 Reference Signal EPRE= -125 dBm/15kHz

NR Cell C

Cell Id=03 TAC = 01 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -125 dBm/30kHz

Band configuration: - Cell A is Band 3. Cell B is Band 39. Cell C is n41

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in NSA mode.

[Initial conditions]

SS

E-UTRAN Cell A is not active E-UTRAN Cell B is not active NR Cell C is not active

The test shall be performed under ideal radio conditions.

UE is powered off

6.3.5.5 Test procedure

Table 6.3.5.5-1: Time of cell power level and parameter changes

Time	E-UTRAN Cell A	E-UTRAN Cell B	NR Cell C	Remark
то	-85	Not Active	-94	
T1	-91	-85	-94	

PREAMBLE

- 1. Activate E-UTRAN Cell A,E-UTRAN Cell B and NR Cell C.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 6.3.5.5-1.
- 3. The UE is powered ON.

MAIN BODY

- 4. The UE performs the registration procedure with activation of the initial default EPS bearer on Cell A (see 36.508, 4.5.2).
- 5. The SS sends an ue-CapabilityRequest including the RAT type "eutra-nr".
- 6. Verify the UE sends UECapabilityInformation message including the RAT type "eutra-nr".
- 7. The SS sends an RRCConnectionReconfiguration message containing NR RRCReconfiguration message to add Cell C as NR PS-Cell with Split DRB. RRCConnectionReconfiguration message contains the ACTIVATE DEDICATED EPS BEARER CONTEXT REQUEST message.
- 8. The UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.
- 9. The UE sends an ULInformationTransfer message containing the ACTIVATE DEDICATED EPS BEARER CONTEXT ACCEPT message.
- 10. Verify the data transmission is performed successfully on NR Cell C.
- 11. The SS changes cell power according to T1 in table 6.3.5.5-1.
- 12. The SS sends an RRCConnectionReconfiguration message containing mobilityControlInfo to handover to E-UTRA Cell B, and containing nr-Config for EN-DC release, and containing RadioBearerConfig to release Split DRB.
- 13. The UE sends an RRCConnectionReconfigurationComplete message.
- 14. Verify the data transmission is continued successfully on E-UTRAN Cell B.

POSTAMBLE

- 15. The SS initiates a Detach procedure.
- 16. The SS initiates a RRC release procedure.
- 17. Deactivate E-UTRAN Cell A, E-UTRAN Cell B and NR Cell C.

Step		Message Sequence				
	U-S	U-S Layer Message		Specific Contents		
1	÷	RRC	Activate E-UTRAN Cell A, E-UTRAN Cell B and			

Table 6.3.5.5-2: Message Sequence

			NR Cell C.		
2			SS configures the initial power according to		
			T0 in Table 6.3.5.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure with		PASS
	~	RRC	activation of the initial default EPS bearer on		
			Cell A (see 36.508, 4.5.2).		
5	←	RRC	The SS sends an ue-CapabilityRequest		
			including the RAT type "eutra-nr".		
6	\rightarrow	RRC	Verify the UE sends UECapabilityInformation		PASS
			message including the RAT type "eutra-nr".		
7	~	NAS	SS sends an RRCConnectionReconfiguration		
		RRC	message containing NR RRCReconfiguration		
			message to add Cell C as NR PS-Cell with Split		
			DRB. RRCConnectionReconfiguration		
			message contains the ACTIVATE DEDICATED		
			EPS BEARER CONTEXT REQUEST message.		
8	\rightarrow	RRC	UE sends an		PASS
U	,		RRCConnectionReconfigurationComplete		17.55
			message containing NR		
			RRCReconfigurationComplete message.		
9	→	NAS			PASS
9	~	_	UE sends an ULInformationTransfer message		PASS
		RRC	containing the ACTIVATE DEDICATED EPS		
10			BEARER CONTEXT ACCEPT message		DAGG
10			Verify the data transmission is performed		PASS
			successfully on NR Cell C.		
11			The SS changes cell power according to T1 in		
			table 6.3.5.5-1.		
12	÷	RRC	SS sends an RRCConnectionReconfiguration		
			message containing mobilityControlInfo to		
			handover to E-UTRA Cell B, and containing		
			nr-Config for EN-DC release, and containing		
			RadioBearerConfig to release Split DRB.		
13	\rightarrow	RRC	UE sends an		
			RRCConnectionReconfigurationComplete		
			message.		
14			Verify the data transmission is continued		PASS
			successfully on E-UTRAN Cell B.		
15	\rightarrow	NAS	SS initiates a Detach procedure.		PASS
	÷				
16	(RRC	SS initiates a RRC release procedure.		
17			Deactivate E-UTRAN Cell A,E-UTRAN Cell B		
			and NR Cell C.		
L		1	1	1	1

6.3.5.6 Expected Result

Verify the data transmission is continued after handover.

6.3.6 Data Session continuity, from E-UTRAN cell to NSA cell

6.3.6.1 Test Purpose

While the UE is in an active PS data session on a E-UTRAN Cell, UE can keep data transmission continuity on NSA PS-Cell after handover from E-UTRAN cell to NSA P-Cell and addition of NSA PS-Cell.

6.3.6.2 Reference specification

3GPP TS 36.331 subclause 5.3.5 3GPP TS 38.331 subclause 5.3.5

6.3.6.3 Applicability

This test applies to the device that supports NSA or SA+NSA.

6.3.6.4 Test conditions

[SS configuration] CellA and Cell B are E-UTRAN Cells, CellC is a NR Cell. Cell B supports NSA, it is a Neighbor Cell of Cell A.

E-UTRAN Cell A Cell Id=01 TAC = 01 MCC-MNC = 460-00 EARFCN= f2 rootSequenceIndex = 0 Reference Signal EPRE= -85 dBm/15kHz

E-UTRAN Cell B Cell Id=02 TAC = 02 MCC-MNC = 460-00 EARFCN= f1 rootSequenceIndex = 8 Reference Signal EPRE= -125 dBm/15kHz upperLayerIndication-r15=true

NR Cell C Cell Id=03 TAC = 02 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -125 dBm/30kHz

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in NSA mode.

[Initial conditions]

SS

E-UTRAN Cell A is not active E-UTRAN Cell B is not active NR Cell C is not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

6.3.6.5 Test procedure

Table 5.1.1.5-1: Time of cell power level and parameter changes

Time	E-UTRAN Cell A	E-UTRAN Cell B	NR Cell C	Remark
то	-85	Not Active	Not Active	
T1	-91	-85	-94	

PREAMBLE

- 1. Activate E-UTRAN Cell A,E-UTRAN Cell B and NR Cell C.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 6.3.6.5-1.
- 3. The UE is powered ON.

MAIN BODY

- 4. The UE performs the registration procedure with activation of the initial default EPS bearer on Cell A (see 36.508, 4.5.2).
- 5. The SS sends an ue-CapabilityRequest including the RAT type "eutra-nr".
- 6. Verify the UE sends UECapabilityInformation message including the RAT type "eutra-nr".
- 7. Verify the data transmission is performed successfully on E-UTRAN Cell A.
- 8. The SS changes cell power according to T1 in table 6.3.6.5-1.
- 9. The SS sends an RRCConnectionReconfiguration message containing mobilityControlInfo to handover to E-UTRA Cell B.
- 10. The UE sends an RRCConnectionReconfigurationComplete message.
- 11. The UE performs TRACKING AREA UPDATE on Cell B.
- 12. The SS sends an RRCConnectionReconfiguration message containing NR RRCReconfiguration message to add Cell C as NR PS-Cell with Split DRB. RRCConnectionReconfiguration message contains the ACTIVATE DEDICATED EPS BEARER CONTEXT REQUEST message.
- 13. The UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.

- 14. The UE sends an ULInformationTransfer message containing the ACTIVATE DEDICATED EPS BEARER CONTEXT ACCEPT message.
- 15. Verify the data transmission is continued successfully on NR Cell C.

POSTAMBLE

- 16. The SS initiates a Detach procedure.
- 17. The SS initiates a RRC release procedure.
- 18. Deactivate E-UTRAN Cell A, E-UTRAN Cell B and NR Cell C.

Step			Message Sequence		Verdict
	U-S	Layer	Message	Specific Contents	
1	←	RRC	Activate E-UTRAN Cell A, E-UTRAN Cell B and NR		
			Cell C.		
2			SS configures the initial power according to T0 in		
			Table 6.3.6.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure with		PASS
	←	RRC	activation of the initial default EPS bearer on		
			Cell A (see 36.508, 4.5.2).		
5	←	RRC	The SS sends an ue-CapabilityRequest including		
			the RAT type "eutra-nr".		
6	\rightarrow	RRC	Verify the UE sends UECapabilityInformation		PASS
			message including the RAT type "eutra-nr".		
7			Verify the data transmission is performed		PASS
			successfully on E-UTRAN Cell A.		
8			SS changes cell power according to T1 in table		
			6.3.6.5-1		
9	÷	RRC	SS sends an RRCConnectionReconfiguration		
			message containing mobilityControlInfo to		
			handover to E-UTRA Cell B		
10	\rightarrow	RRC	UE sends an		PASS
			RRCConnectionReconfigurationComplete		
			message.		
11	\rightarrow	NAS	UE performs TRACKING AREA UPDATE on Cell B.		PASS
	←	RRC			
12	←	NAS	SS sends an RRCConnectionReconfiguration		
		RRC	message containing NR RRCReconfiguration		
			message to add Cell C as NR PS-Cell with Split		
			DRB. RRCConnectionReconfiguration message		
			contains the ACTIVATE DEDICATED EPS BEARER		
			CONTEXT REQUEST message.		
13	\rightarrow	RRC	UE sends an		PASS

GTI 5G Function and Performance Test Specification v4.2 – September 2021

			RRCConnectionReconfigurationComplete					
			message containing NR					
			RRCReconfigurationComplete message.					
14	\rightarrow	NAS	UE sends an ULInformationTransfer message		PASS			
		RRC	containing the ACTIVATE DEDICATED EPS					
			BEARER CONTEXT ACCEPT message					
15			Verify the data transmission is continued		PASS			
			successfully on NR Cell C.					
16	\rightarrow	NAS	SS initiates a Detach procedure.		PASS			
	←							
17	÷	RRC	SS initiates a RRC release procedure.					
18			Deactivate E-UTRAN Cell A, E-UTRAN Cell B and	Deactivate E-UTRAN Cell A,E-UTRAN Cell B and				
			NR Cell C.					

6.3.6.6 Expected Result

Verify the data transmission is continued after handover.

6.3.7 SCG change with P-Cell remain the same, Data continuity

6.3.7.1 Test Purpose

Test to verify the support of SCG change when data transmission keep continuous.

6.3.7.2 Reference specification

3GPP TS 38.331 subclause 5.3.5

6.3.7.3 Applicability

This test applies to Type 1 and Type 3 devices as described in clause 4.2.

6.3.7.4 Test conditions

[SS configuration] CellA is E-UTRAN Cells, Cell B and Cell C are NR intra-frequency cells. Cell A and Cell B supports NSA.

E-UTRAN Cell A Cell Id=01 TAC = 01 MCC-MNC = 460-00 Frequency Configuration = f1 rootSequenceIndex = 0 Reference Signal EPRE= -85 dBm/15kHz upperLayerIndication-r15=true

Cell Id=02 TAC = 01 MCC = 460 MNC = 00 Frequency Configuration = f1 SS/PBCH SSS EPRE = -125 dBm/30kHz

NR Cell C Cell Id=03 TAC = 02 MCC = 460 MNC = 00 Frequency Configuration = f1 SS/PBCH SSS EPRE = -125 dBm/30kHz

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in NSA mode.

[Initial conditions]

SS

UE

E-UTRAN Cell A is not active NR Cell B and Cell C are not active The test shall be performed under ideal radio conditions.

UE is powered off

Reference Signal EPRE

SS/PBCH, SSS EPRE

Reference Signal EPRE

6.3.7.5 Test procedure

Table 6.3.7.5-1: Time of cell power level and parameter changes										
Time	Parameter	Unit	E-UTRAN Cell A	NR Cell B	NR Cell C	Remark				
т0	SS/PBCH, SSS EPRE	dBm/SCS	/	-90	Not Active					

Table 6.3.7.5-1. Time of cell nower level and parameter changes

PREAMBLE

Τ1

1. Activate E-UTRAN Cell A and NR Cell B.The SS configures the corresponding Master Information Block and System Information Block broadcast.

-85

/

-85

/

-100

/

/

-90

/

2. The SS configures the initial power according to T0 in Table 5.1.1.5-1.

dBm/15kHz

dBm/SCS

dBm/15kHz

3. The UE is powered ON.

MAIN BODY

- 4. The UE performs the registration procedure with activation of the initial default EPS bearer on Cell A (see 36.508, 4.5.2).
- 5. The SS sends an ue-CapabilityRequest including the RAT type "eutra-nr".
- 6. Verify the UE sends UECapabilityInformation message including the RAT type "eutra-nr".

- 7. The SS sends an RRCConnectionReconfiguration message containing NR RRCReconfiguration message to add Cell B as NR PS-Cell.
- 8. The UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.
- 9. Verify the data transmission is performed successfully on NR Cell B.
- 10. Active NR Cell C. The SS changes cell power according to T1 in table 6.3.7.5-1.
- 11. The SS sends an RRCConnectionReconfiguration message containing NR RRCReconfiguration message to perform SCG change with reconfigurationWithSync on NR Cell C.
- 12. The UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.
- 13. Verify the data transmission is performed successfully on NR Cell C.

POSTAMBLE

- 14. The SS initiates a Detach procedure.
- 15. The SS initiates a RRC release procedure.
- 16. Deactivate E-UTRAN Cell A, NR Cell B and NR Cell C.

Step			Verdict		
	U-S	Layer	Message	Specific	-
				Contents	
1	←	RRC	Activate E-UTRAN Cell A and NR Cell B.		
2			SS configures the initial power according to TO in		
			Table 6.3. 7.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure with		PASS
	←	RRC	activation of the initial default EPS bearer on Cell A		
			(see 36.508, 4.5.2).		
5	÷	RRC	The SS sends an ue-CapabilityRequest including the		
			RAT type "eutra-nr".		
6	\rightarrow	RRC	Verify the UE sends UECapabilityInformation		PASS
			message including the RAT type "eutra-nr".		
7	←	NAS	SS sends an RRCConnectionReconfiguration		
		RRC	message containing NR RRCReconfiguration		
			message to add Cell B as NR PS-Cell		
8	\rightarrow	RRC	UE sends an		PASS
			RRCConnectionReconfigurationComplete message		
			containing NR RRCReconfigurationComplete		
			message.		
9			Verify the data transmission is performed		PASS
			successfully on NR Cell B.		
10			Active NR Cell C. The SS changes cell power		
			according to T1 in table 6.3.7.5-1.		

Table 6.3.3.5-2: Message Sequence

GTI 5G Function and Performance Test Specification v4.2 – September 2021

11	÷	RRC	SS sends an RRCConnectionReconfiguration	
			message containing NR RRCReconfiguration	
			message to perform SCG change with	
			reconfigurationWithSync on Cell D	
12	\rightarrow	RRC	UE sends RRCConnectionReconfigurationComplete	PASS
			containing NR RRCReconfigurationComplete.	
13			Verify the data transmission is continued	
			successfully on NR Cell D.	
14	\rightarrow	NAS	SS initiates a Detach procedure.	PASS
	←			
15	÷	RRC	SS initiates a RRC release procedure.	
16			Deactivate E-UTRAN Cell A, NR Cell B and NR Cell C.	

6.3.7.6 Expected Result

Verify the data transmission is continued after SCG change.

6.3.8 Inter-band SCG change with P-Cell unchanged, Data continuity

6.3.8.1 Test Purpose

Test to verify the support of inter-band SCG change from n41 cell to n79 cell when data transmission keep continuous.

6.3.8.2 Reference specification

3GPP TS 38.331 subclause 5.3.5

6.3.8.3 Applicability

This test applies to Type 1 and Type 3 devices as described in clause 4.2.

6.3.8.4 Test conditions

[SS configuration] CellA is E-UTRAN Cells, Cell B and Cell C are NR intra-frequency cells. Cell A and Cell B supports NSA.

```
E-UTRAN Cell A
Cell Id=01 TAC = 01
MCC-MNC = 460-00
FDD LTE Band 3
Frequency Configuration = f1
rootSequenceIndex = 0
Reference Signal EPRE= -85 dBm/15kHz
upperLayerIndication-r15=true
```

```
NR Cell B
Cell Id=02 TAC = 01
MCC = 460 MNC = 00
NR Band n41
Frequency Configuration = f1
SS/PBCH SSS EPRE = -125 dBm/30kHz
```

NR Cell C Cell Id=03 TAC = 02 MCC = 460 MNC = 00 NR Band n79 Frequency Configuration = f1 SS/PBCH SSS EPRE = -125 dBm/30kHz

Band configuration: - Cell A is LTE Band 3. Cell B is NR Band n41. Cell C is NR band n79

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in NSA mode.

[Initial conditions]

SS

UE

E-UTRAN Cell A is not active NR Cell B and Cell C are not active The test shall be performed under ideal radio conditions.

UE is powered off

6.3.8.5 Test procedure

The same as in 错误!未找到引用源。

6.3.8.6 Expected Result

Verify UE support NSA band combination B3+n41 and B3+n79. Verify the data transmission keep continuous after SCG change.

6.3.9 Inter-band SCG change with P-Cell unchanged, Voice Call and Data continuity

6.3.9.1 Test Purpose

Setup a real voice call on MCG and PS service on SCG. Test to verify the support of inter-band SCG change from n41 cell to n79 cell when voice call and data transmission keep continuous.

6.3.9.2 Reference specification

3GPP TS 36.331 subclause 5.3.5 3GPP TS 38.331 subclause 5.3.5

6.3.9.3 Applicability

This test applies to Type 1 and Type 3 devices as described in clause 4.2.

This test applies to the device that supports VoLTE

6.3.9.4 Test conditions

[SS configuration] E-UTRAN Cell A Cell Id=01 TAC = 01 MCC-MNC = 460-00 TD-LTE Band 39

GTI

Frequency Configuration = f1 rootSequenceIndex = 0 Reference Signal EPRE= -85 dBm/15kHz upperLayerIndication-r15=true

NR Cell B Cell Id=02 TAC = 01 MCC = 460 MNC = 00 NR Band n41 Frequency Configuration = f1 SS/PBCH SSS EPRE = -125 dBm/30kHz

NR Cell C Cell Id=03 TAC = 02 MCC = 460 MNC = 00 NR Band n79 Frequency Configuration = f1 SS/PBCH SSS EPRE = -125 dBm/30kHz

Band configuration:

- Cell A is TD-LTE Band 39. Cell B is NR Band n41. Cell C is NR band n79

[Initial conditions]

SS

E-UTRAN Cell A is not active E-UTRAN Cell B is not active NR Cell C is not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

6.3.9.5 Test procedure

Time	Parameter	Unit	E-UTRAN Cell A	NR Cell B	NR Cell C	Remark
т0	SS/PBCH, SSS EPRE	dBm/SCS	/	-90	Not Active	
	Reference Signal EPRE	dBm/15kHz	-85	/	/	
T1	SS/PBCH, SSS EPRE	dBm/SCS	/	-100	-90	
	Reference Signal EPRE	dBm/15kHz	-85	/	/	

Table 0-1: Time of cell power level and parameter changes

PREAMBLE

1. Activate E-UTRAN Cell A and NR Cell B. The SS configures the corresponding Master Information Block and System Information Block broadcast.

- 2. The SS configures the initial power according to T0 in Table 5.1.1.5-1.
- 3. The UE is powered ON.

MAIN BODY

- 4. The UE performs the registration procedure with activation of the initial default EPS bearer on Cell A (see 36.508, 4.5.2).
- 5. The SS sends an ue-CapabilityRequest including the RAT type "eutra-nr".
- 6. Verify the UE sends UECapabilityInformation message including the RAT type "eutra-nr".
- 7. The SS sends an RRCConnectionReconfiguration message containing NR RRCReconfiguration message to add Cell B as NR PS-Cell.
- 8. The UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.
- 9. Trigger VoLTE call. UE inititaes the PDN connectivity procedure for the IMS PDN and Default EPS procedure for IMS PDN is completed in Cell A.
- 10. IMS Registration is successful in Cell A
- 11. The UE performs the IMS MO call procedure defined in TS 36.508 table 4.5A.6.3-1.
- 12. Trigger donwlink data transmission. Verify the data transmission is performed successfully on NR Cell B.
- 13. Active NR Cell C. The SS changes cell power according to T1 in Table 0-1.
- 14. The SS sends an RRCConnectionReconfiguration message containing NR RRCReconfiguration message to perform SCG change with reconfigurationWithSync on NR Cell C.
- 15. The UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.
- 16. Verify the voice call and data transmission is performed successfully on NR Cell C without interruption.

POSTAMBLE

- 17. Stop voice call and data transmission.
- 18. The SS initiates a Detach procedure.
- 19. The SS initiates a RRC release procedure.
- 20. Deactivate E-UTRAN Cell A, NR Cell B and NR Cell C.

6.3.9.6 Expected Result

Verify UE support NSA band combination B39+n41 and B39+n79. Verify the voice call and data transmission keep continuous after SCG change

7 Service

7.1 Voice

- 7.1.1 Redirection from NR to E-UTRAN, MO call, SA mode.
- 7.1.1.1 Test Purpose

Verify that the UE will make a VoNR MO call, then redirection from NR to E-UTRAN.

7.1.1.2 Reference specification

TS 36.508, TS 38.508, TS 34.229-1

7.1.1.3 Applicability

This test applies to type 1 and 2 devices as described in clause 4.2. This test applies to the device that supports VoNR&VoLTE

7.1.1.4 Test conditions

[SS configuration] Cell A is E-UTRAN Cell. Cell B is a NR Cell. Cell A supports SA and VoNR&VoLTE

E-UTRAN Cell A Cell Id=01 TAC = 01 MCC-MNC = 460-00 rootSequenceIndex TDD = 0 Reference Signal EPRE= -85 dBm/15kHz upperLayerIndication-r15=true

NR Cell B Cell Id=02 TAC = 01 MCC = 460 MNC = 00 SS/PBCH SSS EPRE = -125 dBm/30kHz

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in SA mode. IMS VoLTE Feature should be enabled on DUT IMS VoNR Feature should be enabled on DUT

[Initial conditions] SS E-UTRAN Cell A is not active NR Cell B is not active

The test shall be performed under ideal radio conditions. UE UE is powered off

Test Point	Cell	Test Band	Test Frequency
1	Cell A	B41	f1
	Cell B	n41	f1
2	Cell A	В3	f1
	Cell B	n28	f1
3	Cell A	В3	f1
	Cell B	n28	f2

Table 7.1.1.4-1: Test Configurations

1. Each test point should be tested as an independent test case.

2. Check section 4.1.2.1 for details of test frequency

7.1.1.5 Test procedure

Table 5.1.1.5-1: Time of cell power level and parameter	changes

Time	Parameter	E-UTRAN Cell A	NR Cell B
то	SS/PBCH	-97	-85
	SSS EPRE		
T1	SS/PBCH	-85	-97
	SSS EPRE		

PREAMBLE

- 18. Activate E-UTRAN Cell A, NR Cell B.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 19. The SS configures the initial power according to T0 in Table 7.1.1.5-1.
- 20. The UE is powered ON

MAIN BODY

- 21. The UE performs the registration procedure on Cell B (see 38.508, Table 4.5.2.2 till Step 18).
- 22. UE inititaes the PDU Session Establishment procedure for the IMS is completed in Cell B.
- 23. IMS Registration is successful in Cell B
- 24. The UE performs the IMS MO call procedure on Cell B.
- 25. The SS configures the initial power according to T1 in Table 7.1.1.5-1.
- 26. The SS send RRCRelease message with E-UTRAN cell information.
- 27. UE performs the TAU procedure for mobility on E-UTRAN Cell A.
- 28. SS initiated PDN connection modification to setup dedicated bearer for voice.
- 29. IMS Voice session establishment continued on Cell A.

POSTAMBLE

- 30. The UE is powered OFF
- 31. Deactivate E-UTRAN Cell A and NR Cell B.

Step	Message Sequence		Verdict		
	U-S	Layer	Message	Specific Contents	
1	÷	RRC	Activate E-UTRAN Cell A and NR Cell B.		
2			SS configures the initial power according to TO		
			in Table 7.1.1.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	The UE performs the registration procedure on		PASS
	←	RRC	Cell B (see 38.508, Table 4.5.2.2 till Step 18).		
5	÷	NAS	UE inititaes the PDU Session Establishment		
		RRC	procedure for the IMS is completed in Cell B		
6	\rightarrow		IMS Registration is successful in Cell B		
	←				
7	\rightarrow		The UE performs the IMS MO call procedure		PASS
	÷		on Cell B.		
8	\rightarrow		The SS configures the initial power according		
	÷		to T1 in Table 7.1.1.5-1.		
9	÷		The SS send RRCRelease message with		PASS
			E-UTRAN cell information		
10	\rightarrow		UE performs the TAU procedure for mobility		
	←		on E-UTRAN Cell A		PASS
11	\rightarrow		SS initiated PDN connection modification to		
	÷		setup dedicated bearer for voice.		
12	\rightarrow		IMS Voice session establishment continued on		
	←		Cell A.		PASS
13		UE	Switch OFF UE	AT Command	
14			Deactivate E-UTRAN Cell A and NR Cell B.		

Table 7.1.1.5-2: Message Sequence

7.1.1.6 Expected Result

Step 4, UE could select NR Cell B and camp on the NR Cell B.
Step 7, UE performs the IMS MO call procedure on Cell B
Step 9, SS RRCRelease message with E-UTRAN CellA information
Step 10, UE performs the TAU procedure for mobility on E-UTRAN Cell A
Step 12, IMS Voice session establishment continued on Cell A.

7.1.2 Redirection from NR to E-UTRAN, MT call, SA mode.

7.1.2.1 Test Purpose

Verify that the UE will make a VoNR MT call, then redirection from NR to E-UTRAN..

7.1.2.2 Reference specification

TS 36.508, TS 38.508, TS 34.229-1

7.1.2.3 Applicability

This test applies to type 1 and 2 devices as described in clause 4.2. This test applies to the device that supports VoNR&VoLTE

7.1.2.4 Test conditions

[SS configuration] Cell A is E-UTRAN Cell. Cell B is a NR Cell. Cell A supports SA and VoNR&VoLTE

E-UTRAN Cell A Cell Id=01 TAC = 01 MCC-MNC = 460-00 rootSequenceIndex TDD = 0 Reference Signal EPRE= -85 dBm/15kHz upperLayerIndication-r15=true

NR Cell B Cell Id=02 TAC = 01 MCC = 460 MNC = 00 SS/PBCH SSS EPRE = -125 dBm/30kHz

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in SA mode. IMS VoLTE Feature should be enabled on DUT IMS VoNR Feature should be enabled on DUT

[Initial conditions] SS E-UTRAN Cell A is not active NR Cell B is not active

The test shall be performed under ideal radio conditions. UE UE is powered off

Test Point	Cell	Test Band	Test Frequency
1	Cell A	B41	f1
	Cell B	n41	f1
2	Cell A	B3	f1

Table7.1.2.4-1: Test Configurati	ons
----------------------------------	-----

GTI 5G Function and Performance Test Specification v4.2 – September 2021

	Cell B	n28	f1		
3	Cell A	В3	f1		
	Cell B	n28	f2		
Note:					
1.Each test point should be tested as an independent test case.					

2. Check section 4.1.2.1 for details of test frequency

7.1.2.5 Test procedure

Time	Parameter	E-UTRAN Cell A	NR Cell B				
то	SS/PBCH	-97	-85				
	SSS EPRE						
T1	SS/PBCH	-85	-97				
	SSS EPRE						

Table 5.1.1.5-1: Time of cell power level and parameter changes

PREAMBLE

- 1. Activate E-UTRAN Cell A, NR Cell B.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 7.1.2.5-1.
- 3. The UE is powered ON

MAIN BODY

- 4. The UE performs the registration procedure on Cell B (see 38.508, Table 4.5.2.2 till Step 18).
- 5. UE inititaes the PDU Session Establishment procedure for the IMS is completed in Cell B.
- 6. IMS Registration is successful in Cell B
- 7. The UE performs the IMS MT call procedure on Cell B.
- 8. The SS configures the initial power according to T1 in Table 7.1.2.5-1.
- 9. The SS send RRCRelease message with E-UTRAN cell information.
- 10. UE performs the TAU procedure for mobility on E-UTRAN Cell A.
- 11. SS initiated PDN connection modification to setup dedicated bearer for voice.
- 12. IMS Voice session establishment continued on Cell A.

POSTAMBLE

- 13. The UE is powered OFF
- 14. Deactivate E-UTRAN Cell A and NR Cell B.

Step	Message Sequence			Verdict	
	U-S	Layer	Message	Specific	
				Contents	
1	÷	RRC	Activate E-UTRAN Cell A and NR Cell B.		
2			SS configures the initial power according to TO in		

GTI 5G Function and Performance Test Specification v4.2 – September 2021

			Table 7.1.2.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	The UE performs the registration procedure on		PASS
	÷	RRC	Cell B (see 38.508, Table 4.5.2.2 till Step 18).		
5	÷	NAS	UE inititaes the PDU Session Establishment		
		RRC	procedure for the IMS is completed in Cell B		
6	\rightarrow		IMS Registration is successful in Cell B		
	←				
7	\rightarrow		The UE performs the IMS MT call procedure on		PASS
	÷		Cell B.		
8	\rightarrow		The SS configures the initial power according to		
	÷		T1 in Table 7.1.2.5-1.		
9	÷		The SS send RRCRelease message with E-UTRAN		PASS
			cell information		
10	\rightarrow		UE performs the TAU procedure for mobility on		PASS
	÷		E-UTRAN Cell A		
11	\rightarrow		SS initiated PDN connection modification to setup		
	÷		dedicated bearer for voice.		
12	\rightarrow		IMS Voice session establishment continued on		PASS
	÷		Cell A.		
13		UE	Switch OFF UE	AT Command	
14			Deactivate E-UTRAN Cell A and NR Cell B.		

7.1.2.6 Expected Result

Step 4, UE could select NR Cell B and camp on the NR Cell B.
Step 7, UE performs the IMS MT call procedure on Cell B
Step 9, SS RRCRelease message with E-UTRAN CellA information
Step 10, UE performs the TAU procedure for mobility on E-UTRAN Cell A
Step 12, IMS Voice session establishment continued on Cell A.

7.1.3 VoLTE MO Call with E-UTRAN Cell, UE works in NSA mode.

7.1.3.1 Test Purpose

Verify that the UE will make a VoLTE MO call with E-UTRAN cell.

7.1.3.2 Reference specification

TS 36.508, TS 34.229-1

7.1.3.3 Applicability

This test applies to type 1 and 3 devices as described in clause 4.2. This test applies to the device that supports VoLTE

GTI

7.1.3.4 Test conditions

[SS configuration] Cell A is E-UTRAN Cell. Cell B is a NR Cell. Cell A supports NSA and VoLTE

E-UTRAN Cell A Cell Id=01 TAC = 01 MCC-MNC = 460-00 E-UTRA Band = 3 EARFCN= f1 rootSequenceIndex TDD = 0 Reference Signal EPRE= -85 dBm/15kHz upperLayerIndication-r15=true

NR Cell B Cell Id=02 TAC = 01 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -125 dBm/30kHz

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in NSA mode. IMS VoLTE Feature should be enabled on DUT

[Initial conditions] SS E-UTRAN Cell A is not active NR Cell B is not active

The test shall be performed under ideal radio conditions. UE UE is powered off

7.1.3.5 Test procedure

Time	Parameter	E-UTRAN Cell A	NR Cell B				
T0	SS/PBCH	-85	-90				
	SSS EPRE						

Table 5.1.1.5-1: Time of cell power level and parameter changes

- 1. Activate E-UTRAN Cell A, NR Cell B.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 7.1.3.5-1.
- 3. The UE is powered ON

MAIN BODY

- 4. The UE performs the registration procedure with activation of the initial default EPS bearer on Cell A (see 36.508, 4.5.2).
- 5. UE inititaes the PDN connectivity procedure for the IMS PDN and Default EPS procedure for IMS PDN is completed in Cell A.
- 6. IMS Registration is successful in Cell A
- 7. The SS sends an RRCConnectionReconfiguration message containing NR RRCReconfiguration message to add Cell B as NR PS-Cell.
- 8. The UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.
- 9. The UE performs the IMS MO call procedure defined in TS 36.508 table 4.5A.6.3-1.

POSTAMBLE

- 10. The UE is powered OFF
- 11. Deactivate E-UTRAN Cell A and NR Cell B.

Step	Message Sequence			Verdict	
	U-S	Layer	Message	Specific	
				Contents	
1	÷	RRC	Activate E-UTRAN Cell A and NR Cell B.		
2			SS configures the initial power according to TO in		
			Table 7.1.3.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure with		PASS
	←	RRC	activation of the initial default EPS bearer on Cell A		
			(see 36.508, 4.5.2).		
5	\rightarrow		UE initiates the PDN Connectivity Procedure for		
	÷		IMS PDN		
6	\rightarrow		IMS Registration Procedure is successful in Cell A		
	←				
7	÷	NAS	SS sends an RRCConnectionReconfiguration		
		RRC	message containing NR RRCReconfiguration		
			message to add Cell B as NR PS-Cell.		
8	\rightarrow	RRC	UE sends an		PASS
			RRCConnectionReconfigurationComplete message		
			containing NR RRCReconfigurationComplete		
			message.		

Table 7.1.3.5-2: Message Sequence

9	→ ←		The UE performs the IMS MO call procedure defined in TS 36.508 table 4.5A.6.3-1.		PASS
10		UE	Switch OFF UE	AT Command	
11			Deactivate E-UTRAN Cell A and NR Cell B.		

7.1.3.6 Expected Result

Step 4, UE could select E-UTRAN Cell A and camp on the E-UTRAN Cell A. Step 8,UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.

Step 9, The UE performs the IMS MO call procedure defined in TS 36.508 table 4.5A.6.3-1.

7.1.4 VoLTE MT Call with E-UTRAN Cell, UE works in NSA mode

7.1.4.1 Test Purpose

Verify that the UE will make a VoLTE MT call with E-UTRAN cell.

7.1.4.2 Reference specification

TS 36.508, TS 34.229-1

7.1.4.3 Applicability

This test applies to type 1 and 3 devices as described in clause 4.2. This test applies to the device that supports VoLTE

7.1.4.4 Test conditions

[SS configuration] Cell A is E-UTRAN Cell, CellB is a NR Cell. Cell A supports NSA and VoLTE

E-UTRAN Cell A Cell Id=01 TAC = 01 MCC-MNC = 460-00 E-UTRA Band = 3 EARFCN= f1 rootSequenceIndex TDD = 0 Reference Signal EPRE= -85 dBm/15kHz upperLayerIndication-r15=true

NR Cell B Cell Id=02 TAC = 01 MCC = 460 MNC = 00 NR-ARFCN= f1

SS/PBCH SSS EPRE = -125 dBm/30kHz

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in NSA mode. IMS VoLTE Feature should be enabled on DUT

[Initial conditions] SS E-UTRAN Cell A is not active NR Cell B is not active

The test shall be performed under ideal radio conditions. UE UE is powered off

7.1.4.5 Test procedure

Time	Parameter	E-UTRAN Cell A	NR Cell B
TO	SS/PBCH	-85	-90
	SSS EPRE		

PREAMBLE

- 1. Activate E-UTRAN Cell A, NR Cell B.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 7.1.4.5-1.
- 3. The UE is powered ON

MAIN BODY

- 4. The UE performs the registration procedure with activation of the initial default EPS bearer on Cell A (see 36.508, 4.5.2).
- 5. UE inititaes the PDN connectivity procedure for the IMS PDN and Default EPS procedure for IMS PDN is completed in Cell A.
- 6. IMS Registration is successful in Cell A
- 7. The SS sends an RRCConnectionReconfiguration message containing NR RRCReconfiguration message to add Cell B as NR PS-Cell.
- 8. The UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.
- 9. The UE performs the IMS MT call procedure defined in TS 36.508 table 4.5A.7.3-1.

POSTAMBLE

- 10. The UE is powered OFF
- 11. Deactivate E-UTRAN Cell A and NR Cell B.

Step	Message Sequence				
	U-S	Layer	Message	Specific	
				Contents	
1	÷	RRC	Activate E-UTRAN Cell A and NR Cell B.		
2			SS configures the initial power according to TO in		
			Table 7.1.4.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure with		PASS
	←	RRC	activation of the initial default EPS bearer on Cell		
			A (see 36.508, 4.5.2).		
5	\rightarrow		UE initiates the PDN Connectivity Procedure for		
	÷		IMS PDN		
6	\rightarrow		IMS Registration Procedure is successful in Cell A		
	÷				
7	÷	NAS	SS sends an RRCConnectionReconfiguration		
		RRC	message containing NR RRCReconfiguration		
			message to add Cell B as NR PS-Cell.		
8	\rightarrow	RRC	UE sends an		PASS
			RRCConnectionReconfigurationComplete message		
			containing NR RRCReconfigurationComplete		
			message.		
9	\rightarrow		The UE performs the IMS MT call procedure		PASS
	÷		defined in TS 36.508 table 4.5A.7.3-1.		
10		UE	Switch OFF UE	AT Command	
11			Deactivate E-UTRAN Cell A and NR Cell B.		

Table 5.1.1.5-2: Message Sequence

7.1.4.6 Expected Result

Step 4, UE could select E-UTRAN Cell A and camp on the E-UTRAN Cell A.

- Step 8, UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.
- Step 9, The UE performs the IMS MT call procedure defined in TS 36.508 table 4.5A.7.3-1.

7.1.5 VoNR MO voice Call, UE works in SA mode.

7.1.5.1 Test Purpose

Verify that UE will make a VoNR MO voice call with NR cell.

7.1.5.2 Reference specification

TS 38.508, TS 34.229-1

7.1.5.3 Applicability

This test applies to type 1 and 2 devices as described in clause 4.2. This test applies to the device that supports VoNR.

7.1.5.4 Test conditions

[SS configuration] Cell A is a NR Cell. Cell A supports SA and VoNR&VoLTE

NR Cell A Cell Id=01 TAC = 01 MCC = 460 MNC = 00 NR Band = n41 NR-ARFCN= f1 SS/PBCH SSS EPRE = -125 dBm/30kHz

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in SA mode. IMS VoLTE Feature should be enabled on DUT

[Initial conditions] SS NR Cell A is not active

The test shall be performed under ideal radio conditions. UE UE is powered off

7.1.5.5 Test procedure

Table 5.1.1.5-1: Time of cell power level and parameter char	nges
able sizizis zi finne of cen power level and parameter cha	1963

Time	NR Cell A	Remark
то	-85	

PREAMBLE

- 1. Activate NR Cell A. The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 7.1.5.5-1.
- 3. The UE is powered ON

MAIN BODY

- 4. The UE performs the registration procedure on Cell A(see 38.508, Table 4.5.2.2 till Step 18).
- 5. UE inititaes the PDU Session Establishment procedure for the IMS is completed in Cell A.
- 6. IMS Registration is successful in Cell A
- 7. The UE performs the IMS MO voice call procedure on Cell A.
- 8. SS sends PDU Session Modification Command message to establish a MT Dedicated EPS bearer (QFI 1) with the UE for voice call.
- 9. The UE shall respond with PDU Session Modification Complete.
- 10. SS initiates answer call procedure.
- 11. Verify if RTP packets are still ongoing to confirm successful call progress via IMS PDU (IPv6). The call should continue for 30 seconds.
- 12. SS initiates CLEAR call procedure.
- 13. SS sends PDU Session Modification Command message to deactivate EPS Bearer (QFI 1).
- 14. The UE shall respond with PDU Session Modification Complete.

POSTAMBLE

- 15. SS initiates a de-registration procedure.
- 16. The SS initiates a RRC release procedure.
- 17. Deactivate NR Cell A.

Step	Message Sequence				
	U-S	Layer	Message	Specific Contents	
1	÷	RRC	Activate NR CellA		
2			SS configures the initial power according to TO		
			in Table 7.1.5.5-1.		
3		UE	The UE is powered ON.	AT Command	
4	\rightarrow	NAS	The UE performs the registration procedure on		PASS
	←	RRC	Cell A(see 38.508, Table 4.5.2.2 till Step 18).		
5	÷	NAS	UE inititaes the PDU Session Establishment		
		RRC	procedure for the IMS is completed in Cell A.		
6	\rightarrow	SIP	IMS Registration is successful in Cell A.		
	÷				
7	\rightarrow	SIP	The UE performs the IMS MO voice call		PASS
	←		procedure on Cell A.		
8	÷	NAS	NR RRC: RRCReconfiguration		
		RRC	5GMM: DL NAS TRANSPORT		
			5GSM: PDU Session Modification Command		
9	\rightarrow	NAS	NR RRC: RRCReconfigurationComplete		PASS
		RRC	5GMM: UL NAS TRANSPORT		
			5GSM: PDU Session Modification Complete.		
10	÷	SIP	SS initiates answer call procedure.		
	\rightarrow				PASS

Table 7.1.5.5-2: Message Sequence

GTI 5G Function and Performance Test Specification v4.2 – September 2021

11			Verify RTP packets are still ongoing to confirm	PASS
			successful call progress via IMS PDU (IPv6).	
			The call should continue for 30 seconds.	
12	←	SIP	SS initiates CLEAR call procedure.	
	\rightarrow			PASS
13	÷	NAS	NR RRC: RRCReconfiguration	
		RRC	5GMM: DL NAS TRANSPORT	
			5GSM: PDU Session Modification Command	
14	\rightarrow	NAS	NR RRC: RRCReconfigurationComplete	PASS
		RRC	5GMM: UL NAS TRANSPORT	
			5GSM: PDU Session Modification Complete.	
15	\rightarrow	NAS	SS initiates a Deregitration procedure.	PASS
	÷			
16	÷	RRC	SS initiates a RRC release procedure.	
17			Deactivate NR Cell A.	

7.1.5.6 Expected Result

Verify that UE establishes a VoNR MO voice call with NR cell sucessfully, the voice RTP packets are transferred on Dedicated EPS bearer (QFI 1).

7.1.6 VoNR MT voice Call, UE works in SA mode

7.1.6.1 Test Purpose

Verify that UE will answer a VoNR MT voice call with NR cell.

7.1.6.2 Reference specification

TS 38.508, TS 34.229-1

7.1.6.3 Applicability

This test applies to type 1 and 2 devices as described in clause 4.2. This test applies to the device that supports VoNR.

7.1.6.4 Test conditions

[SS configuration] Cell A is a NR Cell. Cell A supports SA and VoNR&VoLTE

NR Cell A Cell Id=01 TAC = 01 MCC = 460 MNC = 00 NR Band = n41

NR-ARFCN= f1 SS/PBCH SSS EPRE = -125 dBm/30kHz

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in SA mode. IMS VoLTE Feature should be enabled on DUT

[Initial conditions] SS NR Cell A is not active

The test shall be performed under ideal radio conditions. UE UE is powered off

7.1.6.5 Test procedure

Table 5.1.1.5-1: Time of cell power level and parameter changes

Time	NR Cell A	Remark
Т0	-85	

PREAMBLE

- 1. Activate NR Cell A. The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 7.1.6.5-1.
- 3. The UE is powered ON

MAIN BODY

- 4. The UE performs the registration procedure on Cell A(see 38.508, Table 4.5.2.2 till Step 18).
- 5. UE inititaes the PDU Session Establishment procedure for the IMS is completed in Cell A.
- 6. IMS Registration is successful in Cell A
- 7. SS initiates the IMS voice call procedure on Cell A.
- 8. SS sends PDU Session Modification Command message to establish a MT Dedicated EPS bearer (QFI 1) with the UE for voice call.
- 9. The UE shall respond with PDU Session Modification Complete.
- 10. The UE answers call procedure.
- 11. Verify if RTP packets are still ongoing to confirm successful call progress via IMS PDU (IPv6). The call should continue for 30 seconds.
- 12. SS initiates CLEAR call procedure.
- 13. SS sends PDU Session Modification Command message to deactivate EPS Bearer (QFI 1).
- 14. The UE shall respond with PDU Session Modification Complete.

POSTAMBLE

- 15. SS initiates a de-registration procedure.
- 16. The SS initiates a RRC release procedure.
- 17. Deactivate NR Cell A.

Step	Message Sequence				
	U-S	Layer	Message	Specific Contents	
1	÷	RRC	Activate NR CellA		
2			SS configures the initial power according to TO		
			in Table 7.1.5.5-1.		
3		UE	The UE is powered ON.	AT Command	
4	\rightarrow	NAS	The UE performs the registration procedure on		PASS
	÷	RRC	Cell A(see 38.508, Table 4.5.2.2 till Step 18).		
5	÷	NAS	UE inititaes the PDU Session Establishment		
		RRC	procedure for the IMS is completed in Cell A.		
6	\rightarrow	SIP	IMS Registration is successful in Cell A.		
	÷				
7	\rightarrow	SIP	SS initiates the IMS voice call procedure on		PASS
	÷		Cell A.		
8	÷	NAS	NR RRC: RRCReconfiguration		
		RRC	5GMM: DL NAS TRANSPORT		
			5GSM: PDU Session Modification Command		
9	\rightarrow	NAS	NR RRC: RRCReconfigurationComplete		PASS
		RRC	5GMM: UL NAS TRANSPORT		
			5GSM: PDU Session Modification Complete.		
10	÷	SIP	The UE answers call procedure.		
	\rightarrow				PASS
11			Verify RTP packets are still ongoing to confirm		PASS
			successful call progress via IMS PDU (IPv6).		
			The call should continue for 30 seconds.		
12	÷	SIP	SS initiates CLEAR call procedure.		
	\rightarrow				PASS
13	÷	NAS	NR RRC: RRCReconfiguration		
		RRC	5GMM: DL NAS TRANSPORT		
			5GSM: PDU Session Modification Command		
14	\rightarrow	NAS	NR RRC: RRCReconfigurationComplete		PASS
		RRC	5GMM: UL NAS TRANSPORT		
			5GSM: PDU Session Modification Complete.		
15	\rightarrow	NAS	SS initiates a Deregitration procedure.		PASS
	÷				

Table 7.1.6.5-2: Message Sequence

16	÷	RRC	SS initiates a RRC release procedure.	
17			Deactivate NR Cell A.	

7.1.6.6 Expected Result

Verify that UE establishes a VoNR MT voice call with NR cell sucessfully, the voice RTP packets are transferred on Dedicated EPS bearer (QFI 1).

7.1.7 VoNR MO voice Call, with UL throughput under static channel

7.1.7.1 VoNR MO voice Call with UL throughput under static channel, UL 256QAM, UL2*2 MIMO ,SA mode.

7.1.7.1.1 Test Purpose

Verify that UE could make a VoNR MO voice call successfully with data transmission simultaneously. To measure the UE application layer uplink performance while uploading TCP based data in Conducted, Static Channel, SA Option2, 100 MHz BW, Full Resource Allocation, UL 256QAM, UL2*2 MIMO

7.1.7.1.2 Reference specification

TS 38.508, TS 34.229-5, TS 38.331, TS 38.521-1

7.1.7.1.3 Applicability

This test applies to type 1 and 2 devices as described in clause 4.2. This test applies to the device that supports VoNR.

7.1.7.1.4 Test conditions

[SS configuration] Cell A is a NR Cell. Cell A supports SA and VoNR&VoLTE

NR Cell A Cell Id=01 TAC = 01 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -125 dBm/30kHz rootSequenceIndex = 0 UL Modulation / Coding = 27 RB Allocation UL= Full RB Allocation DL = Full simultaneousAckNackAndCQI = TRUE enableUL256QAM = TRUE

CPConfig = UL: Normal CP/DL: Normal CP

subcarrierSpacing=30kHz

Test Point	Propagation	Correlation
	Conditions	Matrices
NR-1	Static	N/A

Table 7.1.7.1.4-2: Test band configuration

Test	Test band	Frequency	NR Frame	Specail Frame
Point		Configuration	Structure	
1	n41	f1	DD DD DD DS UU	DDDDDGGGGUUUU
2	n79	f1	DSUUU DSUUU	DDDDDDDDDGGUU
Note:	Note:			
1.Each test point should be tested as an independent test case.				
2. Check section 4.1.2.1 for details of test frequency				

[UE configuration]

The test UICC with USIM should be inserted

The UE is in AUTOMATIC network selection mode.

UE works in SA mode.

IMS Voice Feature should be enabled on DUT

[Initial conditions]

SS

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PUSCH and PUCCH before measurement are specified in Annex G.2 of TS 38.521-1.

Test Environment: Normal, as defined in TS 38.508-1 clause 4.1.

Frequencies to be tested: Mid Range, as defined in TS 38.508-1.

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 Annex A, Figure A.3.1.1.2 for NR UL MIMO.
- 2. Connect an application server to the IP output of the SS configured with a FTP server.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.1 in TS 38.521-1 and uplink signals according to Annex G.1 and G.3.2 in TS 38.521-1.
- 4. Propagation conditions are set according to Annex B.0 in TS 38.521-1.

UE

UE is powered off

7.1.7.1.5 Test procedure

Table 5.1.1.5-1: Time of cell power level and parameter changes

Time	NR Cell A	Remark
то	-85	

PREAMBLE

- 1. Activate NR Cell A. The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. Set the parameters of the propagation condition and initial powe according to Table 7.1.7.1.4-1 and Table 7.1.7.1.5-1.
- 3. The UE is powered ON
- 4. UE performs a Registration procedure on NR-RAN Cell A to register for PS services. The UE establishes the default NR bearer during the registration according to TS 38.508 subclause 4.5.2.
- 5. The SS transmits an RRC Connection Reconfiguration.
- 6. UE transmit an RRCReconfigurationComplete message to SS.
- UE initiaes the PDU Session Establishment procedure for the IMS with QoS flow 5QI=5 (QFI1) is completed in Cell A.
- 8. IMS Registration is successful in Cell A.

MAIN BODY

- 9. Using the TCP client, begin TCP upload for [90] seconds and record Throughput result.
- 10. The UE performs the IMS MO voice call procedure on Cell A.
- 11. SS sends PDU Session Modification Command message to establish a QoS flow with 5QI=1 (QFI 2) in IMS PDU session for voice call.
- 12. The UE shall respond with PDU Session Modification Complete.
- 13. SS initiates answer call procedure.
- 14. Verify if RTP packets are ongoing to confirm successful call progress via IMS PDU (IPv6). The call should continue for 30 seconds.
- 15. Verify the uplink data transmission is ongoing. Record the change of throughput at the TCP layer on the uplink channel during the MO voice call and calculate the average of the throughput.
- 16. SS initiates CLEAR call procedure.
- 17. Repeat step 9-16 for one more iteration.

POSTAMBLE

- 18. SS initiates a de-registration procedure.
- 19. The SS initiates a RRC release procedure.
- 20. Deactivate NR Cell A.

7.1.7.1.6 Expected Result

1. Verify that UE establishes a VoNR MO voice call with NR cell sucessfully, the voice RTP packets

are transferred on PDU Session5QI=1 (QFI 2).

2. Record the change of TCP throughput during VoNR MO voice call and calculate the average TCP throughput. The average uplink throughput at the application layer shall meet or exceed the value in following table.

Test Point	Test Band	Expected UL TCP Throughput at Step 9	Expected UL TCP Throughput at Step 15
1	n41	[250 Mbps]	[250 Mbps]
2	n79	[760 Mbps]	[760 Mbps]

Table7.1.7.1.6-1: expected result

7.1.7.2 VoNR MO voice Call with UL throughput under static channel, UL 256QAM, Single TX, HPUE,SA mode.

7.1.7.2.1 Test Purpose

Verify that UE could make a VoNR MO voice call successfully with data transmission simultaneously. To measure the UE application layer uplink performance while uploading TCP based data in Conducted, Static Channel, SA Option2, Full Resource Allocation, UL 256QAM, Single TX, HPUE

7.1.7.2.2 Reference specification

TS 38.508, TS 34.229-5, TS 38.331, TS 38.521-1

7.1.7.2.3 Applicability

This test applies to type 1 and 2 devices as described in clause 4.2. This test applies to the device that supports VoNR. This test only applies for band n28.

7.1.7.2.4 Test conditions

[SS configuration] Cell A is a NR Cell. Cell A supports SA and VoNR&VoLTE

NR Cell A Cell Id=01 TAC = 01 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -125 dBm/30kHz rootSequenceIndex = 0 UL Modulation / Coding = 27 RB Allocation UL= Full

RB Allocation DL = Full simultaneousAckNackAndCQI = TRUE enableUL256QAM = TRUE CPConfig = UL: Normal CP/DL: Normal CP subcarrierSpacing=15kHz

Table 7.1.7.2.4-1: Test Points Configuratio	n
---	---

Test Point	Propagation Conditions	Correlation Matrices
NR-1	Static	N/A

Table 7.1.7.2.4-2: Test band configuration
--

Test	Test band	Frequency	NR Frame	Specail Frame	
Point		Configuration	Structure		
1	n28	f1	/	/	
Note:					
1.Each test point should be tested as an independent test case.					
2. Check section 4.1.2.1 for details of test frequency					

[UE configuration]

The test UICC with USIM should be inserted

The UE is in AUTOMATIC network selection mode.

UE works in SA mode.

IMS Voice Feature should be enabled on DUT

[Initial conditions]

SS

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PUSCH and PUCCH before measurement are specified in Annex G.2 of TS 38.521-1.

Test Environment: Normal, as defined in TS 38.508-1 clause 4.1.

Frequencies to be tested: Mid Range, as defined in TS 38.508-1.

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 Annex A, Figure A.3.1.1.1 for basic single cell.
- 2. Connect an application server to the IP output of the SS configured with a FTP server.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.1 in TS 38.521-1 and uplink signals according to Annex G.1 and G.3.2 in TS 38.521-1.
- 4. Propagation conditions are set according to Annex B.0 in TS 38.521-1.

UE

UE is powered off

7.1.7.2.5 Test procedure

Table 5.1.1.5-1: Time of cell power level and parameter changes

Time	NR Cell A	Remark
Т0	-85	

PREAMBLE

- 1. Activate NR Cell A. The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. Set the parameters of the propagation condition and initial powe according to Table 7.1.7.2.4-1 and Table 7.1.7.2.5-1.
- 3. The UE is powered ON
- 4. UE performs a Registration procedure on NR-RAN Cell A to register for PS services. The UE establishes the default NR bearer during the registration according to TS 38.508 subclause 4.5.2.
- 5. The SS transmits an RRCReconfiguration.
- 6. UE transmit an RRC ReconfigurationComplete message to SS.
- UE initiates the PDU Session Establishment procedure for the IMS with QoS flow 5QI=5 (QFI1) is completed in Cell A.
- 8. IMS Registration is successful in Cell A.

MAIN BODY

- 9. Using the TCP client, begin TCP upload for [90] seconds and record Throughput result.
- 10. The UE performs the IMS MO voice call procedure on Cell A.
- 11. SS sends PDU Session Modification Command message to establish a QoS flow with 5QI=1 (QFI 2) in IMS PDU session for voice call.
- 12. The UE shall respond with PDU Session Modification Complete.
- 13. SS initiates answer call procedure.
- 14. Verify if RTP packets are ongoing to confirm successful call progress via IMS PDU (IPv6). The call should continue for 30 seconds.
- 15. Verify the uplink data transmission is ongoing. Record the change of throughput at the TCP layer on the uplink channel during the MO voice call and calculate the average of the throughput.
- 16. SS initiates CLEAR call procedure.
- 17. Repeat step 9-16 for one more iteration.

POSTAMBLE

- 18. SS initiates a de-registration procedure.
- 19. The SS initiates a RRC release procedure.
- 20. Deactivate NR Cell A.

7.1.7.2.6 Expected Result

1. Verify that UE establishes a VoNR MO voice call with NR cell sucessfully, the voice RTP packets are transferred on PDU Session5QI=1 (QFI 2).).

2. Record the change of TCP throughput during VoNR MO voice call and calculate the average TCP throughput. The average uplink throughput at the application layer shall meet or exceed the value in following table.

Table7 1 7 2 6-1	expected result
100107.1.7.2.0 1	chpected result

Test Point	Test Band	Expected UL TCP Throughput at Step 9	Expected UL TCP Throughput at Step 15
1	n28	[175 Mbps]	[175 Mbps]

7.1.8 VoNR MT voice Call, with DL throughput under static channel

7.1.8.1 VoNR MT voice Call with DL throughput under static channel, 256QAM, DL 4*4 MIMO ,SA mode.

7.1.8.1.1 Test Purpose

Verify that UE would make a VoNR MT voice call successfully with downlink data transmission simultaneously. To measure the UE application layer downlink performance while downloading TCP based data in Conducted, Static Channel, SA Option2, 100 MHz BW, Full Resource Allocation, 256QAM, DL 4*4 MIMO

7.1.8.1.2 Reference specification

TS 38.508, TS 34.229-5, TS 38.331, TS 38.508, TS 38.521-1

7.1.8.1.3 Applicability

This test applies to type 1 and 2 devices as described in clause 4.2. This test applies to the device that supports VoNR.

7.1.8.1.4 Test conditions

[SS configuration]

[SS configuration] Cell A is a NR Cell. Cell A supports SA and VoNR&VoLTE

NR Cell A Cell Id=01 TAC = 01 MCC = 460 MNC = 00 NR-ARFCN= f1

SS/PBCH SSS EPRE = -125 dBm/30kHz rootSequenceIndex = 0 UL Modulation / Coding = 27 RB Allocation UL= Full RB Allocation DL = Full simultaneousAckNackAndCQI = TRUE enableUL256QAM = TRUE CPConfig = UL: Normal CP/DL: Normal CP subcarrierSpacing=30kHz DI/UL switch period=5ms

Table 7.1.8.1.4-1: Test Points Configuration

Test Point	Propagation Conditions	Correlation Matrices
NR-1	Static	N/A

Table 7.1.8.1.4-2: Test band configuration

Test	Test band	Frequency	NR Frame	Specail Frame	
Point		Configuration	Structure		
1	n41	f1	DD DD DD DS UU	DDDDDGGGGUUUU	
2	n79	f1	DSUUU DSUUU	DDDDDDDDDGGUU	
Note:					
1.Each test point should be tested as an independent test case.					
2. Check section 4.1.2.1 for details of test frequency					

[UE configuration]

The test UICC with USIM should be inserted

The UE is in AUTOMATIC network selection mode.

UE works in SA mode.

IMS Voice Feature should be enabled on DUT

[Initial conditions]

SS

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PUSCH and PUCCH before measurement are specified in Annex G.2 of TS 38.521-1.

Test Environment: Normal, as defined in TS 38.508-1 clause 4.1.

Frequencies to be tested: Mid Range, as defined in TS 38.508-1.

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 Annex A, Figure A.3.2.1.5 for antenna configuration 4x4..
- 2. Connect an application server to the IP output of the SS configured with a FTP server.

- 3. Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.1 in TS 38.521-1 and uplink signals according to Annex G.1 and G.3.2 in TS 38.521-1.
- 4. Propagation conditions are set according to Annex B.0 in TS 38.521-1.

UE

UE is powered off

7.1.8.1.5 Test procedure

Table 5.1.1.5-1: Time of cell power level and parameter changes

Time	NR Cell A	Remark
то	-85	

PREAMBLE

- 1. Activate NR Cell A. The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. Set the parameters of the propagation condition and initial powe according to Table 7.1.8.1.4-1 and Table 7.1.8.1.5-1.
- 3. The UE is powered ON
- 4. UE performs a Registration procedure on NR-RAN Cell A to register for PS services. The UE establishes the default NR bearer during the registration according to TS 38.508 subclause 4.5.2.
- 5. The SS transmits an RRCReconfiguration.
- 6. UE transmit an RRCReconfigurationComplete message to SS.
- 7. UE inititaes the PDU Session Establishment procedure for the IMS with QoS flow 5QI=5 is completed in Cell A.
- 8. IMS Registration is successful in Cell A.

MAIN BODY

- 9. Using the TCP client, begin TCP download for [90] seconds and record Throughput result.
- 10. SS initiates the IMS voice call procedure on Cell A.
- 11. SS sends PDU Session Modification Command message to establish a QoS flow with 5QI=1 (QFI 2) in IMS PDU session for voice call.
- 12. The UE shall respond with PDU Session Modification Complete.
- 13. The UE answers call procedure.
- 14. Verify if RTP packets are still ongoing to confirm successful call progress via IMS PDU (IPv6). The call should continue for 30 seconds.
- 15. Verify the downlink data transmission is ongoing. Record the change of throughput at the TCP layer on the downlink channel during the MT voice call and calculate the average of the throughput.
- 16. SS initiates CLEAR call procedure.
- 17. Repeat step 9-16 for one more iteration.

POSTAMBLE

18. SS initiates a de-registration procedure.

- 19. The SS initiates a RRC release procedure.
- 20. Deactivate NR Cell A.

7.1.8.1.6 Expected Result

1. Verify that UE establishes a VoNR MO voice call with NR cell sucessfully, the voice RTP packets are transferred on PDU Session5QI=1 (QFI 2).

 Record the change of TCP throughput during VoNR MT voice call and calculate the average TCP throughput. The average downlink throughput at the application layer shall meet or exceed the value in following table.

Test Point	Test Band	Expected DL TCP Throughput at step 9	Expected DL TCP Throughput at Step 15
1	n41	[1.53 Gbps]	[1.53 Gbps]
2	n79	[0.78 Gbps]	[0.78 Gbps]

7.1.8.2 VoNR MT voice Call with DL throughput under static channel, 256QAM, DL 2*2 MIMO ,SA mode.

7.1.8.2.1 Test Purpose

Verify that UE would make a VoNR MT voice call successfully with downlink data transmission simultaneously. To measure the UE application layer downlink performance while downloading TCP based data in Conducted, Static Channel, SA Option2, Full Resource Allocation, 256QAM, DL 2*2 MIMO

7.1.8.2.2 Reference specification

TS 38.508, TS 34.229-5, TS 38.331, TS 38.508, TS 38.521-1

7.1.8.2.3 Applicability

This test applies to type 1 and 2 devices as described in clause 4.2. This test applies to the device that supports VoNR. This test only applies for band n28.

7.1.8.2.4 Test conditions

[SS configuration]

Cell A is a NR Cell.

Cell A supports SA and VoNR&VoLTE

GTI

NR Cell A Cell Id=01 TAC = 01 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -125 dBm/30kHz rootSequenceIndex = 0 UL Modulation / Coding = 27 RB Allocation UL= Full RB Allocation DL = Full simultaneousAckNackAndCQI = TRUE enableUL256QAM = TRUE CPConfig = UL: Normal CP/DL: Normal CP subcarrierSpacing=15kHz DI/UL switch period=5ms

Table 7.1.8.4-1: Test Points Configuration

Test Point	Propagation Conditions	Correlation Matrices
NR-1	Static	N/A

Test	Test band	Frequency	NR Frame	Specail Frame	
Point		Configuration	Structure		
1	n28	f1	/	/	
Note:					
1.Each test point should be tested as an independent test case.					
2. Check section 4.1.2.1 for details of test frequency					

[UE configuration]

The test UICC with USIM should be inserted

The UE is in AUTOMATIC network selection mode.

UE works in SA mode.

IMS Voice Feature should be enabled on DUT

[Initial conditions]

SS

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PUSCH and PUCCH before measurement are specified in Annex G.2 of TS 38.521-1.

Test Environment: Normal, as defined in TS 38.508-1 clause 4.1.

Frequencies to be tested: Mid Range, as defined in TS 38.508-1.

- 1. Connect the SS to the UE antenna connectors as shown in TS 36.508-1 Annex A, Figure A.3.2.1.5 for antenna configuration 2x2.
- 2. Connect an application server to the IP output of the SS configured with a FTP server.
- Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.1 in TS
 38.521-1 and uplink signals according to Annex G.1 and G.3.2 in TS 38.521-1.
- 4. Propagation conditions are set according to Annex B.0 in TS 38.521-1.

UE

UE is powered off

7.1.8.2.5 Test procedure

Table 5 1 1 5-1. Time /	of call nowar lava	I and parameter changes
	Ji celi power ieve	i and parameter changes

Time	NR Cell A	Remark
Т0	-85	

PREAMBLE

- 1. Activate NR Cell A. The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. Set the parameters of the propagation condition and initial powe according to Table 7.1.8.2.4-1 and Table 7.1.8.2.5-1.
- 3. The UE is powered ON
- 4. UE performs a Registration procedure on NR-RAN Cell A to register for PS services. The UE establishes the default NR bearer during the registration according to TS 38.508 subclause 4.5.2.
- 5. The SS transmits an RRCReconfiguration.
- 6. UE transmit an RRCReconfiguration Complete message to SS.
- 7. UE inititaes the PDU Session Establishment procedure for the IMS with QoS flow 5QI=5 is completed in Cell A.
- 8. IMS Registration is successful in Cell A.

MAIN BODY

- 9. Using the TCP client, begin TCP download for [90] seconds and record Throughput result.
- 10. SS initiates the IMS voice call procedure on Cell A.
- 11. SS sends PDU Session Modification Command message to establish a QoS flow with 5QI=1 (QFI 2) in IMS PDU session for voice call.
- 12. The UE shall respond with PDU Session Modification Complete.
- 13. The UE answers call procedure.
- 14. Verify if RTP packets are still ongoing to confirm successful call progress via IMS PDU (IPv6). The call should continue for 30 seconds.

- 15. Verify the downlink data transmission is ongoing. Record the change of throughput at the TCP layer on the downlink channel during the MT voice call and calculate the average of the throughput.
- 16. SS initiates CLEAR call procedure.
- 17. Repeat step 9-16 for one more iteration.

POSTAMBLE

- 18. SS initiates a de-registration procedure.
- 19. The SS initiates a RRC release procedure.
- 20. Deactivate NR Cell A.

7.1.8.2.6 Expected Result

1. Verify that UE establishes a VoNR MT voice call with NR cell sucessfully, the voice RTP packets are transferred on PDU Session5QI=1 (QFI 2).

 Record the change of TCP throughput during VoNR MT voice call and calculate the average TCP throughput. The average downlink throughput at the application layer shall meet or exceed the value in following table.

Table7.1.8.6-1: expected result

Test Point	Test Band	Expected DL TCP Throughput at step 9	Expected DL TCP Throughput at Step 15
1	n28	[315 Mbps]	[315 Mbps]

7.1.9 Inter-RAT handover between NR and E-UTRAN cells with IMS MO voice Call

7.1.9.1 Test Purpose

Setup an IMS MO voice call. The UE executes handovers from NR cell to E-UTRAN cell and handovers from E-UTRAN cell to NR cell multi-times. Verify the UE is able to maintain the voice call.

7.1.9.2 Reference specification

TS 38.508, TS 34.229-5, TS 38.331, TS 38.521-1

7.1.9.3 Applicability

This test applies to type 1 and 2 devices as described in clause 4.2. This test applies to the device that supports VoNR and VoLTE.

7.1.9.4 Test conditions

[SS configuration]

Cell A is an E-UTRAN cell, Cell A supports VoLTE. Cell B is a NR Cell, Cell B supports SA and VoNR.

E-UTRAN Cell A Cell Id=1 TAC = 1 MCC = 460 MNC = 00 rootSequenceIndex = 0 Reference Signal EPRE = -125 dBm/15kHz

NR Cell B Cell Id=02 TAC = 01 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -125 dBm/30kHz

[UE configuration] The test USIM shall be inserted. The UE is in AUTOMATIC network selection mode. UE works in SA and LTE mode.

[Initial conditions]SSE-UTRAN Cell A is not active.NR Cell B is not active.The test shall be performed under ideal radio conditions.

UE UE is powered off

Test Point	Cell	Test Band	Test Frequency
1	Cell A	B3	f1
	Cell B	n41	f1
2	Cell A	B39	f1
	Cell B	n79	f1
3	Cell A	B3	f1
	Cell B	n28	f1
Note:			
1.Each test point sho	ould be tested as an indepe	endent test case.	
2. Check section 4.1.	2.1 for details of test frequ	iency	

Table 7.1.9.4-1: Test band configuration	
--	--

7.1.9.5 Test procedure

Time	E-UTRAN Cell A	NR Cell B	Remark
то	-140	-85	
T1	-85	-97	
T2	-97	-85	

Table 5.1.1.5-1: Time of cell power level and parameter changes

PREAMBLE

- 1. Activate E-UTRAN Cell A and NR Cell B. The SS configures the transmission of the Master Information Block and starts the System Information Block broadcasting on all cells.
- 2. The SS configures the initial power according to T0 in Table 7.1.9.5-1.
- 3. The UE is powered ON.

MAIN BODY

- 4. The UE performs Registration procedure on NR Cell B according to subclause 5.4.1 step3-18.
- 5. UE inititaes the PDU Session Establishment procedure for the IMS with QoS flow 5QI=5 is completed in Cell B. IMS Registration is successful in Cell B.
- 6. The SS sends RRC Connection Reconfiguration message to setup inter-RAT measurement (Event B2). The UE sends RRC Connection Reconfiguration Complete message.
- 7. The UE performs the IMS MO voice call procedure on Cell B.
- SS sends PDU Session Modification Command message to establish a QoS flow with 5QI=1 in IMS PDU session for voice call. The UE shall respond with PDU Session Modification Complete.
- 9. SS initiates answer call procedure.
- 10. Verify if RTP packets are ongoing to confirm successful call progress via IMS PDU (IPv6). The call should continue for 20 seconds.
- 11. The SS changes the cell power according to T1 in table 7.1.9.5-1.
- 12. The UE performs measurements on the neighbor Cell A and provides measurement reports (Event B2) to the SS.
- 13. The SS sends an RRC Connection Reconfiguration message to order the UE to perform inter-RAT handover from NR Cell B to E-UTRAN Cell A.
- 14. The UE completes the HO procedure by sending the RRC CONNECTION RECONFIGURATION COMPLETE message on target E-UTRAN Cell A.
- 15. The SS sends RRC Connection Reconfiguration message to setup inter-RAT measurement (Event B2). The UE sends RRC Connection Reconfiguration Complete message.
- 16. Verify if RTP packets are ongoing to confirm successful call progress via IMS PDU (IPv6). The call should continue for 20 seconds.
- 17. The SS changes the cell power according to T2 in table 7.1.9.5-1.
- 18. The UE performs measurements on the neighbor NR Cell B and provides measurement reports (Event B2) to the SS.
- 19. The SS sends an RRC Connection Reconfiguration message to order the UE to perform inter-RAT handover from E-UTRAN Cell A to NR Cell B.
- 20. The SS sends RRC Connection Reconfiguration message to setup inter-RAT measurement

(Event B2). The UE sends RRC Connection Reconfiguration Complete message.

- 21. Verify if RTP packets are ongoing to confirm successful call progress via IMS PDU (IPv6). The call should continue for 20 seconds.
- 22. Repeat steps 11 to 21 two times
- 23. SS initiates CLEAR call procedure.

24. SS sends PDU Session Modification Command message to release voice date bearer. The UE shall respond with PDU Session Modification Complete.

POSTAMBLE

- 25. SS initiates a de-registration procedure.
- 26. The SS initiates a RRC release procedure.
- 27. Deactivate E-UTRAN Cell A and NR Cell B.

Step	Message Sequence		Verdict		
	U-S	Layer	Message	Specific Contents	
1	←	RRC	SS Activates E-UTRAN Cell A and NR Cell B.		
2			SS configures the initial power according to TO		
			in Table 7.1.9-1.		
3		UE	The UE is powered ON.	AT Command	
4	\rightarrow	NAS	The UE performs the registration procedure on		PASS
	←	RRC	Cell B(see 38.508, Table 4.5.2.2 till Step 18).		
5	÷	NAS	UE inititaes the PDU Session Establishment		
		RRC	procedure for the IMS is completed in Cell B.		
	\rightarrow	SIP	IMS Registration is successful in Cell B.		
	←				
6	←	RRC	SS sends RRC Connection Reconfiguration		
	\rightarrow		message to setup inter-RAT measurement		
			(Event B2).		
			UE sends RRC Connection Reconfiguration		
			Complete message.		
7	\rightarrow	SIP	The UE performs the IMS MO voice call		PASS
	÷		procedure on Cell B.		
8	÷	NAS	NR RRC: RRCReconfiguration		PASS
	\rightarrow	RRC	5GMM: DL NAS TRANSPORT		
			5GSM: PDU Session Modification Command		
			NR RRC: RRCReconfigurationComplete		
			5GMM: UL NAS TRANSPORT		
			5GSM: PDU Session Modification Complete.		
9	←	SIP	SS initiates answer call procedure.		PASS
	\rightarrow				
10			Verify RTP packets are still ongoing to confirm		PASS
			successful call progress via IMS PDU (IPv6).		
			The call should continue for 20 seconds.		

Table 7.1.9.5-2: Message Sequence

		1		
11			The SS changes the cell power according to T1	
	_		in table 7.1.9.5-1.	
12	\rightarrow	RRC	UE performs measurements on the neighbor	PASS
			Cell A and provides measurement reports	
			(Event B2) to the SS.	
13	←	RRC	SS sends an RRC Connection Reconfiguration	
			message to order the UE to perform inter-RAT	
			handover from NR Cell B to E-UTRAN Cell A.	
14	\rightarrow	RRC	UE completes the HO procedure by sending	PASS
			the RRC CONNECTION RECONFIGURATION	
			COMPLETE message on target E-UTRAN Cell A.	
15	÷	RRC	SS sends RRC Connection Reconfiguration	
	\rightarrow		message to setup inter-RAT measurement	
			(Event B2).	
			UE sends RRC Connection Reconfiguration	
			Complete message.	
16			Verify RTP packets are still ongoing to confirm	PASS
			successful call progress via IMS PDU (IPv6).	
			The call should continue for 20 seconds.	
17			The SS changes the cell power according to T2	
			in table 7.1.9.5-1.	
18	\rightarrow	RRC	UE performs measurements on the neighbor	PASS
			NR Cell B and provides measurement reports	
			(Event B2) to the SS.	
19	÷	RRC	SS sends an RRC Connection Reconfiguration	
			message to order the UE to perform inter-RAT	
			handover from E-UTRAN Cell A to NR Cell B.	
20	\rightarrow	RRC	UE completes the HO procedure by sending	PASS
			the RRC CONNECTION RECONFIGURATION	
			COMPLETE message on target Cell B.	
21			Verify RTP packets are still ongoing to confirm	PASS
			successful call progress via IMS PDU (IPv6).	
			The call should continue for 20 seconds.	
22			Repeat steps 11 to 21 two times.	
23	←	SIP	SS initiates CLEAR call procedure.	
	\rightarrow			PASS
24	(NAS	NR RRC: RRCReconfiguration	PASS
	\rightarrow	RRC	5GMM: DL NAS TRANSPORT	
			5GSM: PDU Session Modification Command	
			NR RRC: RRCReconfigurationComplete	
			5GMM: UL NAS TRANSPORT	
			5GSM: PDU Session Modification Complete.	
25	\rightarrow	NAS	SS initiates a Deregitration procedure.	PASS
	<pre>/</pre>			

26	←	RRC	SS initiates a RRC release procedure.	
27			Deactivate NR Cell A.	

7.1.9.6 Expected Result

- 1. Verify the UE can perform the inter-RAT handover procedure successfully.
- 2. The voice RTP packets are transferred on voice data bearer.

7.1.10 Data Session continuity, Inter-RAT handover between NR and E-UTRAN cells with IMS MT voice Call.

7.1.10.1 Test Purpose

While the UE is in an active PS data session on a NR cell, setup an IMS MT voice call. The UE executes handovers from NR cell to E-UTRAN cell and handovers from E-UTRAN cell to NR cell multi-times. Verify the UE is able to maintain the voice call and PS data transfer.

7.1.10.2 Reference specification

TS 38.508, TS 34.229-5, TS 38.331, TS 38.508, TS 38.521-1

7.1.10.3 Applicability

This test applies to type 1 and 2 devices as described in clause 4.2. This test applies to the device that supports VoNR and VoLTE.

7.1.10.4 Test conditions

[SS configuration] Cell A is an E-UTRAN cell, Cell A supports VoLTE. Cell B is a NR Cell, Cell B supports SA and VoNR.

E-UTRAN Cell A Cell Id=1 TAC = 1 MCC = 460 MNC = 00 rootSequenceIndex = 0 Reference Signal EPRE = -125 dBm/15kHz

NR Cell B Cell Id=02 TAC = 01

MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -125 dBm/30kHz

[UE configuration] The test USIM shall be inserted. The UE is in AUTOMATIC network selection mode. UE works in SA and LTE mode.

[Initial conditions]SSE-UTRAN Cell A is not active.NR Cell B is not active.The test shall be performed under ideal radio conditions.

UE

UE is powered off

Test Point	Cell	Test Band	Test Frequency
1	Cell A	B3	f1
	Cell B	n41	f1
2	Cell A	B39	f1
	Cell B	n79	f1
3	Cell A	B3	f1
	Cell B	n28	f1

Table 7.1.10.4-1: Test band configuration

2. Check section 4.1.2.1 for details of test frequency

7.1.10.5 Test procedure

Table 5.1.1.5-1: Time of cell power level and parameter changes

Time	E-UTRAN Cell A	NR Cell B	Remark
то	-140	-85	
T1	-85	-97	
T2	-97	-85	

PREAMBLE

1. Activate E-UTRAN Cell A and NR Cell B. The SS configures the transmission of the Master Information Block and starts the System Information Block broadcasting on all cells.

- 2. The SS configures the initial power according to T0 in Table 7.1.10.5-1.
- 3. The UE is powered ON.
- 4. The UE performs Registration procedure on NR Cell B according to subclause 5.4.1 step3-18.

5. UE inititaes the PDU Session Establishment procedures for the IMS and internet data service is completed in Cell B. IMS Registration is successful in Cell B.

MAIN BODY

- 6. The SS sends RRC Connection Reconfiguration message to setup inter-RAT measurement (Event B2). The UE sends RRC Connection Reconfiguration Complete message.
- 7. Start DL PING data and verify the data transmission is performed successfully on NR-Cell B.
- 8. SS initiates the IMS voice call procedure on Cell B.
- SS sends PDU Session Modification Command message to establish a QoS flow with 5QI=1 in IMS PDU session for voice call. The UE shall respond with PDU Session Modification Complete.
- 10. The UE answers call procedure.
- 11. Verify if RTP packets are ongoing to confirm successful call progress via IMS PDU (IPv6). The call should continue for 20 seconds.
- 12. Verify the data transmission is performed successfully on NR-Cell B.
- 13. The SS changes the cell power according to T1 in table 7.1.10.5-1.
- 14. The UE performs measurements on the neighbor Cell A and provides measurement reports (Event B2) to the SS.
- 15. The SS sends an RRC Connection Reconfiguration message to order the UE to perform inter-RAT handover from NR Cell B to E-UTRAN Cell A.
- 16. The UE completes the HO procedure by sending the RRC CONNECTION RECONFIGURATION COMPLETE message on target E-UTRAN Cell A.
- 17. The SS sends RRC Connection Reconfiguration message to setup inter-RAT measurement (Event B2). The UE sends RRC Connection Reconfiguration Complete message.
- 18. Verify if RTP packets are ongoing to confirm successful call progress via IMS PDU (IPv6). The call should continue for 20 seconds.
- 19. Verify the data transmission is performed successfully on E-Cell A.
- 20. The SS changes the cell power according to T2 in table 7.1.10.5-1.
- 21. The UE performs measurements on the neighbor NR Cell B and provides measurement reports (Event B2) to the SS.
- 22. The SS sends an RRC Connection Reconfiguration message to order the UE to perform inter-RAT handover from E-UTRAN Cell A to NR Cell B.
- 23. The SS sends RRC Connection Reconfiguration message to setup inter-RAT measurement (Event B2). The UE sends RRC Connection Reconfiguration Complete message.
- 24. Verify if RTP packets are ongoing to confirm successful call progress via IMS PDU (IPv6). The call should continue for 20 seconds.
- 25. Verify the data transmission is performed successfully on NR-Cell B.
- 26. Repeat steps 13 to 25 two times
- 27. SS initiates CLEAR call procedure.

28. SS sends PDU Session Modification Command message to release voice date bearer. The UE shall respond with PDU Session Modification Complete.

29. Verify the data transmission is performed successfully on NR-Cell B.

POSTAMBLE

- 30. SS initiates a de-registration procedure.
- 31. The SS initiates a RRC release procedure.
- 32. Deactivate E-UTRAN Cell A and NR Cell B.

Table 7.1.10.5-2: Message Sequence

Step	Message Sequence				
	U-S	Layer	Message	Specific Contents	
1	÷	RRC	SS Activates E-UTRAN Cell A and NR Cell B.		
2			SS configures the initial power according to TO		
			in Table 7.1.10-1.		
3		UE	The UE is powered ON.	AT Command	
4	\rightarrow	NAS	The UE performs the registration procedure on		PASS
	←	RRC	Cell B(see 38.508, Table 4.5.2.2 till Step 18).		
5	←	NAS	UE inititaes the PDU Session Establishment		
		RRC	procedures for the IMS and internet data		
			service is completed in Cell B		
	\rightarrow	SIP	IMS Registration is successful in Cell B.		
	÷				
6	÷	RRC	SS sends RRC Connection Reconfiguration		
	\rightarrow		message to setup inter-RAT measurement		
			(Event B2).		
			UE sends RRC Connection Reconfiguration		
			Complete message.		
7			Start DL PING data and verify the data		PASS
			transmission is performed successfully on		
			NR-Cell B		
8	\rightarrow	SIP	SS initiates the IMS voice call procedure on		PASS
	←		Cell B.		
9	←	NAS	NR RRC: RRCReconfiguration		PASS
	\rightarrow	RRC	5GMM: DL NAS TRANSPORT		
			5GSM: PDU Session Modification Command		
			NR RRC: RRCReconfigurationComplete		
			5GMM: UL NAS TRANSPORT		
			5GSM: PDU Session Modification Complete.		
10	←	SIP	The UE answers call procedure.		PASS
	\rightarrow				
11			Verify RTP packets are still ongoing to confirm		PASS
			successful call progress via IMS PDU (IPv6).		
			The call should continue for 20 seconds.		

12			Verify the data transmission is performed	PASS
			successfully on NR-Cell B	
13			The SS changes the cell power according to T1	
			in table 7.1.10.5-1.	
14	\rightarrow	RRC	UE performs measurements on the neighbor	PASS
			Cell A and provides measurement reports	
			(Event B2) to the SS.	
15	÷	RRC	SS sends an RRC Connection Reconfiguration	
			message to order the UE to perform inter-RAT	
			handover from NR Cell B to E-UTRAN Cell A.	
16	\rightarrow	RRC	UE completes the HO procedure by sending	PASS
			the RRC CONNECTION RECONFIGURATION	
			COMPLETE message on target E-UTRAN Cell A.	
17	(RRC	SS sends RRC Connection Reconfiguration	
	\rightarrow		message to setup inter-RAT measurement	
			(Event B2).	
			UE sends RRC Connection Reconfiguration	
			Complete message.	
18			Verify RTP packets are still ongoing to confirm	PASS
-			successful call progress via IMS PDU (IPv6).	
			The call should continue for 20 seconds.	
19			Verify the data transmission is performed	PASS
20			successfully on E-Cell A	
20			The SS changes the cell power according to T2	
20			in table 7.1.10.5-1.	
21	\rightarrow	RRC	UE performs measurements on the neighbor	PASS
21	Í	inte	NR Cell B and provides measurement reports	17.05
			(Event B2) to the SS.	
22	\	RRC	SS sends an RRC Connection Reconfiguration	
22		inte	message to order the UE to perform inter-RAT	
			handover from E-UTRAN Cell A to NR Cell B.	
23	\rightarrow	RRC	UE completes the HO procedure by sending	PASS
23		inc	the RRC CONNECTION RECONFIGURATION	FA35
			COMPLETE message on target Cell B.	
24			Verify RTP packets are still ongoing to confirm	DACC
24				PASS
			successful call progress via IMS PDU (IPv6).	
25			The call should continue for 20 seconds.	DACC
25			Verify the data transmission is performed	PASS
26			successfully on NR-Cell B	
26			Repeat steps 13 to 25 two times.	
27	\ ←	SIP	SS initiates CLEAR call procedure.	
	→ 			PASS
28	←	NAS	NR RRC: RRCReconfiguration	PASS
	\rightarrow	RRC	5GMM: DL NAS TRANSPORT	

GTI 5G Function and Performance Test Specification v4.2 – September 2021

			5GSM: PDU Session Modification Command	
			NR RRC: RRCReconfigurationComplete	
			5GMM: UL NAS TRANSPORT	
			5GSM: PDU Session Modification Complete.	
29			Verify the data transmission is performed	PASS
			successfully on NR-Cell B	
30	\rightarrow	NAS	SS initiates a Deregitration procedure.	PASS
	←			
31	←	RRC	SS initiates a RRC release procedure.	
32			Deactivate NR Cell A.	

7.1.10.6 Expected Result

- 1. Verify the UE can perform the inter-RAT handover procedure successfully.
- 2. The voice RTP packets are transferred on voice data bearer.
- 3. The PS data are transferred on internet data bearer.

8 Roaming

9 Power Consumption

9.1 Idle Mode

9.1.1 Idle Mode, Power Consumption, Cell Centre, SA

9.1.1.1 Test Purpose

When UE enters RRC_Idle State after Registering in NR cell, Measure the power consumption.

9.1.1.2 Reference specification

TS 38.304, TS 38.331, TS 38.300

9.1.1.3 Applicability

This test applies to Type 1 and Type 2 devices as described in clause 4.2.

9.1.1.4 Test conditions

[SS configuration] Cell A is a NR Cell. Cell A supports only SA

NR Cell A Cell Id=01 TAC = 01 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -125 dBm/30kHz

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in SA mode.

[Initial conditions]

SS

NR Cell A is not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

9.1.1.5 Test procedure

Table 5.1.1.5-1: Time of cell p	ower level and	narameter changes
Table 5.1.1.5-1. Time of Cell p	ower level and	parameter changes

Time	NR Cell A	Remark	
то	-90		

PREAMBLE

- 1. Activate NR Cell A.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 9.1.1.5-1.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure on Cell A (see 38.508, Table 4.5.2.2 till Step 18).
- 5. Verify that Data tranfer(Ping) perofrmed on NR cell A
- 6. The RRC connection is released by the SS. The UE enters Registered, Idle Mode

MAIN BODY

7. Wait for 3 minutes and then start power consumption tester records the changes of current for another 3 minutes

POSTAMBLE

- 8. The SS initiates a Deregitration procedure.
- 9. The SS initiates a RRC release procedure.
- 10. Deactivate NR Cell A.

GTI 5G Function and Performance Test Specification v4.2 – September 2021

Step			Message Sequence		Verdict
	U-S	Layer	Message	Specific Contents	
			Connect the power consumption tester to		
			the UE		
1	←	RRC	Activate NR Cell A.		
2			SS configures the initial power according to		
			T0 in Table 9.1.1.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure (see		PASS
	←	RRC	38.508, Table 4.5.2.2 till Step 18).		
5			Verify the data transmission is performed		PASS
			successfully on NR Cell A.		
6	÷	RRC	The RRC connection is released by the SS.		
7			Wait for 3 minutes and then start power		
			consumption tester records the changes of		
			current for another 3 minutes		
8	\rightarrow	NAS	SS initiates a Deregitration procedure.		PASS
	←				
9	←	RRC	SS initiates a RRC release procedure.		
10			Deactivate NR Cell A.		

9.1.1.6 Expected Result

The Current Should be less than [TBD]mA

9.1.2 Idle Mode, Power Consumption, Cell Edge, SA

9.1.2.1 Test Purpose

When UE enters RRC_Idle State after Registering in NR cell, Measure the power consumption.

9.1.2.2 Reference specification

TS 38.304, TS 38.331, TS 38.300

9.1.2.3 Applicability

This test applies to Type 1 and Type 2 devices as described in clause 4.2.

9.1.2.4 Test conditions

[SS configuration] Cell A is a NR Cell. Cell A supports only SA

NR Cell A Cell Id=01 TAC = 01

MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -125 dBm/30kHz

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in SA mode.

[Initial conditions]

SS

NR Cell A is not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

9.1.2.5 Test procedure

Table 5.1.1.5-1: Time of cell power level and parameter changes

Time	NR Cell A	Remark	
ТО	-110		

PREAMBLE

- 1. Activate NR Cell A.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 9.1.2.5-1.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure on Cell A (see 38.508, Table 4.5.2.2 till Step 18).
- 5. Verify that Data tranfer(Ping) perofrmed on NR cell A
- 6. The RRC connection is released by the SS. The UE enters Registered, Idle Mode

MAIN BODY

7. Wait for 3 minutes and then start power consumption tester records the changes of current for another 3 minutes

POSTAMBLE

- 8. The SS initiates a Deregitration procedure.
- 9. The SS initiates a RRC release procedure.
- 10. Deactivate NR Cell A.

Table 5.1.1.5-2: Message Sequence

Step	Message Sequence	Verdict
------	------------------	---------

GTI 5G Function and Performance Test Specification v4.2 – September 2021

	U-S	Layer	Message	Specific Contents	
			Connect the power consumption tester to the		
			UE		
1	÷	RRC	Activate NR Cell A.		
2			SS configures the initial power according to TO		
			in Table 9.1.2.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure (see		PASS
	÷	RRC	38.508, Table 4.5.2.2 till Step 18).		
5			Verify the data transmission is performed		PASS
			successfully on NR Cell A.		
6	÷	RRC	The RRC connection is released by the SS.		
7			Wait for 3 minutes and then start power		
			consumption tester records the changes of		
			current for another 3 minutes		
8	\rightarrow	NAS	SS initiates a Deregitration procedure.		PASS
	÷				
9	÷	RRC	SS initiates a RRC release procedure.		
10			Deactivate NR Cell A.		

9.1.2.6 Expected Result

The Current Should be less than [TBD]mA

9.1.3 Idle Mode, Power Consumption, Cell Centre, NSA

9.1.3.1 Test Purpose

When UE enters RRC_Idle State after connected to NSA Mode, Measure the power consumption.

9.1.3.2 Reference specification

TS 36.304, clause 5.2.4

9.1.3.3 Applicability

This test applies to Type 1 and Type 3 devices as described in clause 4.2.

9.1.3.4 Test conditions

[SS configuration] Cell A is E-UTRAN Cell, CellB is a NR Cell. Cell A supports NSA

E-UTRAN Cell A Cell Id=01 TAC = 01

MCC-MNC = 460-00 EARFCN= f1 rootSequenceIndex = 0 Reference Signal EPRE= -85 dBm/15kHz upperLayerIndication-r15=true

NR Cell B Cell Id=02 TAC = 01 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -125 dBm/30kHz

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in NSA mode.

[Initial conditions]

SS

E-UTRAN Cell A is not active

NR Cell B is not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

9.1.3.5 Test procedure

Table 5.1.1.5-1: Time of cell power level and parameter changes

Time	E-UTRAN Cell A	NR Cell C	Remark
то	-85	-90	

PREAMBLE

- 1. Activate E-UTRAN Cell A, NR Cell B.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 9.1.3.5-1.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure with activation of the initial default EPS bearer on Cell A (see 36.508, 4.5.2).
- 5. The SS sends an ue-CapabilityRequest including the RAT type "eutra-nr".
- 6. Verify the UE sends UECapabilityInformation message including the RAT type "eutra-nr".
- 7. The SS sends an RRCConnectionReconfiguration message containing NR RRCReconfiguration message to add Cell B as NR PS-Cell with Split DRB.
- 8. The UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.

- 9. Verify that Data tranfer(Ping) perofrmed on NR cell B
- 10. The RRC connection is released by the SS. The UE enters Registered, Idle Mode

MAIN BODY

11. Wait for 3 minutes and then start power consumption tester records the changes of current for another 3 minutes

POSTAMBLE

- 12. The SS initiates a Detach procedure.
- 13. The SS initiates a RRC release procedure.
- 14. Deactivate E-UTRAN Cell A and NR Cell B.

Step	Message Sequence				
	U-S	Layer	Message	Specific Contents	
			Connect the power consumption tester to		
			the UE		
1	←	RRC	Activate E-UTRAN Cell A and NR Cell B.		
2			SS configures the initial power according to		
			T0 in Table 9.1.3.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure with		PASS
	÷	RRC	activation of the initial default EPS bearer on		
			Cell A (see 36.508, 4.5.2).		
5	←	RRC	The SS sends an ue-CapabilityRequest		
			including the RAT type "eutra-nr".		
6	\rightarrow	RRC	Verify the UE sends UECapabilityInformation		PASS
			message including the RAT type "eutra-nr".		
7	÷	NAS	SS sends an RRCConnectionReconfiguration		
		RRC	message containing NR RRCReconfiguration		
			message to add Cell B as NR PS-Cell with Split		
			DRB.		
8	\rightarrow	RRC	UE sends an		PASS
			RRCConnectionReconfigurationComplete		
			message containing NR		
			RRCReconfigurationComplete message.		
9			Verify the data transmission is performed		PASS
			successfully on NR Cell B.		
10	←	RRC	The RRC connection is released by the SS.		
11			Wait for 3 minutes and then start power		
			consumption tester records the changes of		
			current for another 3 minutes		

Table 5.1.1.5-2: Message Sequence

12	\rightarrow	NAS	SS initiates a Detach procedure.	PASS
	÷			
13	÷	RRC	SS initiates a RRC release procedure.	
14			Deactivate E-UTRAN Cell A and NR Cell B.	

9.1.3.6 Expected Result

The Current Should be less than [TBD]mA

9.1.4 Idle Mode, Power Consumption, Cell Edge, NSA

9.1.4.1 Test Purpose

When UE enters RRC_Idle State after connected to NSA Mode, Measure the power consumption.

9.1.4.2 Reference specification

TS 36.304, clause 5.2.4

9.1.4.3 Applicability

This test applies to Type 1 and Type 3 devices as described in clause 4.2.

9.1.4.4 Test conditions

[SS configuration] Cell A is E-UTRAN Cell, CellB is a NR Cell. Cell A supports NSA

E-UTRAN Cell A Cell Id=01 TAC = 01 MCC-MNC = 460-00 EARFCN= f1 rootSequenceIndex = 0 Reference Signal EPRE= -85 dBm/15kHz upperLayerIndication-r15=true

NR Cell B Cell Id=02 TAC = 01 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -125 dBm/30kHz

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode.

UE works in NSA mode.

[Initial conditions]

SS

E-UTRAN Cell A is not active NR Cell B is not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

9.1.4.5 Test procedure

Table 5.1.1.5-1: Time of cell power level and parameter changes

Time		E-UTRAN Cell A	NR Cell C	Remark
	то	-100	-110	

PREAMBLE

- 1. Activate E-UTRAN Cell A, NR Cell B.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 9.1.4.5-1.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure with activation of the initial default EPS bearer on Cell A (see 36.508, 4.5.2).
- 5. The SS sends an ue-CapabilityRequest including the RAT type "eutra-nr".
- 6. Verify the UE sends UECapabilityInformation message including the RAT type "eutra-nr".
- 7. The SS sends an RRCConnectionReconfiguration message containing NR RRCReconfiguration message to add Cell B as NR PS-Cell with Split DRB.
- 8. The UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.
- 9. Verify that Data tranfer(Ping) perofrmed on NR cell B
- 10. The RRC connection is released by the SS. The UE enters Registered, Idle Mode

MAIN BODY

11. Wait for 3 minutes and then start power consumption tester records the changes of current for another 3 minutes

POSTAMBLE

- 12. The SS initiates a Detach procedure.
- 13. The SS initiates a RRC release procedure.
- 14. Deactivate E-UTRAN Cell A and NR Cell B.

Table 5.1.1.5-2: Message Sequence

Step Message Sequence	Verdict
-----------------------	---------

GTI 5G Function and Performance Test Specification v4.2 – September 2021

	U-S	Layer	Message	Specific Contents	
			Connect the power consumption tester to the UE		
1	÷	RRC	Activate E-UTRAN Cell A and NR Cell B.		
2			SS configures the initial power according to		
			T0 in Table 9.1.4.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure with		PASS
	÷	RRC	activation of the initial default EPS bearer on Cell A (see 36.508, 4.5.2).		
5	÷	RRC	The SS sends an ue-CapabilityRequest including the RAT type "eutra-nr".		
6	\rightarrow	RRC	Verify the UE sends UECapabilityInformation message including the RAT type "eutra-nr".		PASS
7	÷	NAS RRC	SS sends an RRCConnectionReconfiguration message containing NR RRCReconfiguration message to add Cell B as NR PS-Cell with Split DRB.		
8	→	RRC	UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.		PASS
9			Verify the data transmission is performed successfully on NR Cell B.		PASS
10	÷	RRC	The RRC connection is released by the SS.		
11			Wait for 3 minutes and then start power consumption tester records the changes of current for another 3 minutes		
12	→ ←	NAS	SS initiates a Detach procedure.		PASS
13	÷	RRC	SS initiates a RRC release procedure.		
14			Deactivate E-UTRAN Cell A and NR Cell B.		

9.1.4.6 9.1.4.6 Expected Result

The Current Should be less than [TBD]mA

9.1.5 Idle mode with intra Frequency Measurement, Power Consumption

9.1.5.1 Test Purpose

When UE enters idle mode and cell reselection conditions met for Intra Frequency cell check that UE reselect into neighbour cell, measure the power consumption.

9.1.5.2 Reference specification

TS 38.304, TS 38.331, TS 38.300

9.1.5.3 Applicability

This test applies to the device that supports SA or SA+NSA.

9.1.5.4 Test conditions

[SS configuration] Cell A and B are intra frequency NR Cells. Cell A and B support only SA

NR Cell A Cell Id=01 TAC = 01 MCC = 460 MNC = 00 NR Band = n41 NR-ARFCN= f1

Bandwidth = 100 MHz SS/PBCH SSS EPRE = -125 dBm/30kHz

NR Cell B

Cell Id=02 TAC = 01 MCC = 460 MNC = 00 NR Band = n41 NR-ARFCN= f1 Bandwidth = 100 MHz SS/PBCH SSS EPRE = -125 dBm/30kHz

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in SA mode.

[Initial conditions]

SS

NR Cell A and NR Cell B are not active The test shall be performed under ideal radio conditions.

UE

UE is powered off

9.1.5.5 Test procedure

Table 9.1.5.55.1.1.5-1: Time of cell power level and parameter changes

Time NR Cell A NR Cell B Remark

то	-90	-95	
T1	-106	-90	For cell reselection

PREAMBLE

- 1. Activate NR Cell A. The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 9.1.5.5-1.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure on Cell A and release the RRC connection (see TS 38.508-1, Table 4.5.2.2-2 till Step 20a1).

MAIN BODY

- 5. Start power consumption tester to record the changes of current and voltage of idle mode
- 6. The SS changes the power level according to T1 in Table 9.1.5.5-1.
- 7. Initiate the paging procedure to check whether UE reselected into cell B or not.
- 8. Get the value of power consumption tester between step 5 and 7.

POSTAMBLE

- 9. The SS initiates a Deregitration procedure.
- 10. The SS initiates a RRC release procedure.
- 11. Deactivate NR Cell A and Cell B

Step	Message Sequence				Verdict
	U-S	S Layer Message		Specific Contents	
			Connect the power consumption tester to		
			the UE		
1			Activate NR Cell A.		
2			SS configures the initial power according to		
			T0 in Table 9.1.5.5-1.		
3			Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure (see		PASS
	÷	RRC	TS-38.508-1, Table 4.5.2.2-2 till Step 20a1).		
5			Start power consumption tester to record the		
			changes of current and voltage of cell		
			reselection procedure		
6			The SS changes the power level according to		
			T1 in Table 9.1.5.5-1		
7	\rightarrow	RRC	Initiate the paging procedure to check		PASS
	÷		whether UE reselected into cell B or not		
8			Get the power concumption tester values at		

Table 9.1.5.55.1.1.5-2: Message Sequence

			the time of cell reselection between step 5 and 7	
9	\rightarrow	NAS	SS initiates a Deregitration procedure.	PASS
	÷			
10	÷	RRC	SS initiates a RRC release procedure.	
11			Deactivate NR Cell A and B.	

9.1.5.6 Expected Result

The current should be less than [TBD]mA

9.1.6 Idle mode with inter Frequency Measurement, Power Consumption

9.1.6.1 Test Purpose

When UE enters idle mode and cell reselection conditions met for Inter Frequency cell check that UE reselect into neighbour cell, measure the power consumption.

9.1.6.2 Reference specification

TS 38.304, TS 38.331, TS 38.300

9.1.6.3 Applicability

This test applies to the device that supports SA or SA+NSA.

9.1.6.4 Test conditions

[SS configuration] Cell A and B are inter frequency NR Cells. Cell A and B support only SA

NR Cell A Cell Id=01 TAC = 01 MCC = 460 MNC = 00 NR Band = n41 NR-ARFCN= f1 Bandwidth = 100 MHz SS/PBCH SSS EPRE = -125 dBm/30kHz

NR Cell B Cell Id=02 TAC = 01 MCC = 460 MNC = 00 NR Band = n79 NR-ARFCN= f1 Bandwidth = 100 MHz

SS/PBCH SSS EPRE = -125 dBm/30kHz

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in SA mode.

[Initial conditions]

SS

NR Cell A and NR Cell B are not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

9.1.6.5 Test procedure

Table 9.1.6.55.1.1.5-1: Time of cell power level and parameter changes

Time	NR Cell A	NR Cell B	Remark
то	-90	-95	
T1	-106	-90	For cell reselection

PREAMBLE

- 1. Activate NR Cell A. The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 9.1.6.5-1.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure on Cell A and release the RRC connection (see TS 38.508-1, Table 4.5.2.2-2 till Step 20a1).

MAIN BODY

- 5. Start power consumption tester to record the changes of current and voltage of idle mode
- 6. The SS changes the power level according to T1 in Table 9.1.6.5-1.
- 7. Initiate the paging procedure to check whether UE reselected into cell B or not.
- 8. Get the value of power consumption tester between step 5 and 7.

POSTAMBLE

- 9. The SS initiates a Deregistration procedure.
- 10. The SS initiates a RRC release procedure.
- 11. Deactivate NR Cell A and Cell B

Table 5.1.1.5-2: Message Sequence

Step	Message Sequence	Verdict	
------	------------------	---------	--

	U-S	Layer	Message	Specific Contents	
			Connect the power consumption tester to the UE		
1			Activate NR Cell A.		
2			SS configures the initial power according to T0 in Table 9.1.6.5-1.		
3			Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure (see		PASS
	←	RRC	TS 38.508-1, Table 4.5.2.2-2 till Step 20a1).		
5			Start power consumption tester to record the		
			changes of current and voltage of cell		
			reselection procedure		
6			The SS changes the power level according to		
			T1 in Table 9.1.6.5-1		
7	\rightarrow	RRC	Initiate the paging procedure to check		PASS
	(whether UE reselected into cell B or not		
8			Get the power concumption tester values at		
			the time of cell reselection r between step 5		
			and 7.		
9	\rightarrow	NAS	SS initiates a Deregitration procedure.		PASS
	←				
10	←	RRC	SS initiates a RRC release procedure.		
11			Deactivate NR Cell A and B.		

9.1.6.6 Expected Result

The current should be less than [TBD]mA

9.2 RRC Connection mode

9.2.1 Connected Mode, Power Consumption

9.2.1.1 Connected Mode, Power Consumption, SA

9.2.1.1.1 Test Purpose

When UE is in RRC Connected State after Registering in NR cell, Measure the power consumption.

9.2.1.1.2 Reference specification

TS 38.304, TS 38.331, TS 38.300

9.2.1.1.3 Applicability

This test applies to the device that supports SA or SA+NSA.

9.2.1.1.4 Test conditions

GTI

[SS configuration] Cell A is a NR Cell. Cell A supports only SA

NR Cell A Cell Id=01 TAC = 01 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -125 dBm/30kHz

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in SA mode.

[Initial conditions]

SS

NR Cell A is not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

9.2.1.1.5 Test procedure

Table 5.1.1.5-1: Time of cell power level and parameter changes

Time	NR Cell A	Remark
ТО	-90	

PREAMBLE

- 1. Activate NR Cell A.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 9.2.1.5-1.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure on Cell A (see 38.508, Table 4.5.2.2 till Step 18).
- 5. Verify that Data tranfer(Ping) perofrmed on NR cell A

MAIN BODY

6. Wait for 3 minutes and then start power consumption tester records the changes of current and voltage for another 3 minutes

POSTAMBLE

7. The SS initiates a Deregitration procedure.

- 8. The SS initiates a RRC release procedure.
- 9. Deactivate NR Cell A.

Step	Message Sequence				Verdict
	U-S	Layer	er Message Specific Contents		
			Connect the power consumption tester to		
			the UE		
1	÷	RRC	Activate NR Cell A.		
2			SS configures the initial power according to		
			T0 in Table 9.2.1.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure (see		PASS
	÷	RRC	38.508, Table 4.5.2.2 till Step 18).		
5			Verify the data transmission is performed		PASS
			successfully on NR Cell A.		
6			Wait for 3 minutes and then start power		
			consumption tester records the changes of		
			current and voltage for another 3 minutes		
7	\rightarrow	NAS	SS initiates a Deregistration procedure.		PASS
	÷				
8	÷	RRC	SS initiates a RRC release procedure.		
9			Deactivate NR Cell A.		

Table 5.1.1.5-2: Message Sequence

9.2.1.1.6 Expected Result

The Current Should be less than [TBD]mA

9.2.1.2 Connected Mode with DRX, Power Consumption, SA

9.2.1.2.1 Test Purpose

When UE is in RRC Connected State after Registering in NR cell, measure the power consumption with DRX on.

9.2.1.2.2 Reference specification

TS 38.304, TS 38.331, TS 38.300

9.2.1.2.3 Applicability

This test applies to Type 1 and Type 2 devices as described in clause 4.2

9.2.1.2.4 Test conditions

[SS configuration] Cell A is a NR Cell.

Cell A supports only SA

NR Cell A Cell Id=01 TAC = 01 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -125 dBm/30kHz

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in SA mode.

[Initial conditions]

SS

NR Cell A is not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

9.2.1.2.5 Test procedure

Table 9.2.1.2.5-1: Time of cell power level and parameter changes

Time	NR Cell A	Remark
ТО	-90	

PREAMBLE

- 1. Activate NR Cell A.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 9.2.1.5-1.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure on Cell A (see 38.508, Table 4.5.2.2 till Step 18).

MAIN BODY

- 5. Keep the NR RRC connection without DRX configured. Wait for 1 minutes and then start power consumption tester records the changes of current for another 3 minutes.
- 6. Stop power consumption measurement.
- 7. SS transmits RRCConnectionReconfiguration to configure specific DRX parameters. Refer to Table 9.2.1.2.5-3 for DRX parameters
- 8. UE transmits RRCConnectionReconfigurationComplete
- 9. Wait for 1 minutes and then start power consumption tester records the changes of current for another 3 minutes
- 10. Stop power consumption measurement.

POSTAMBLE

- 11. The SS initiates a Deregitration procedure.
- 12. The SS initiates a RRC release procedure.
- 13. Deactivate NR Cell A.

			Table 5.2.1.2.5 2. Message Sequence		
Step			Message Sequence		Verdict
	U-S	Layer	Message	Specific Contents	
1	÷	RRC	Activate NR Cell A.		
2			SS configures the initial power according to		
			T0 in Table 9.2.1.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure (see		PASS
	←	RRC	38.508, Table 4.5.2.2 till Step 18).		
5			Wait for 1 minutes and then start power	Without DRX	PASS
			consumption tester records the changes of		
			current for another 3 minutes		
6			Stop power consumption measurement.		
7	←	NAS	SS transmits RRCConnectionReconfiguration	Table 9.2.1.2.5-3 for	
		RRC	to configure specific DRX parameters.	DRX parameters	
8	\rightarrow	NAS	UE transmits		PASS
		RRC	RRCConnectionReconfigurationComplete		
9			Wait for 1 minutes and then start power		PASS
			consumption tester records the changes of		
			current for another 3 minutes		
10			Stop power consumption measurement.		
11	\rightarrow	NAS	SS initiates a Deregistration procedure.		
	÷				
12	←	RRC	SS initiates a RRC release procedure.		
13			Deactivate NR Cell A.		

Table 9.2.1.2.5-2	Message Sequence
-------------------	------------------

Table 9.2.1.2.5-3: NR DRX Parameters in step 7

Derivation Path: TS 38.331 [6], clause 6.3.2	2	
Information Element	Value/remark	Comment
DRX-Config ::= SEQUENCE {		
drx-onDurationTimer CHOICE {		
milliSeconds	ms10	
}		
drx-InactivityTimer	[ms60]	
drx-HARQ-RTT-TimerDL	[14]	
drx-HARQ-RTT-TimerUL	[14]	
drx-RetransmissionTimerDL	[sl 8]	
drx-RetransmissionTimerUL	[sl 8]	

drx-LongCycleStartOffset CHOICE {		
ms160	0	
}		
shortDRX	not present	
drx-SlotOffset	0	
}		

9.2.1.2.6 Expected Result

Record the average current in step 5 (current without DRX) and step 9 (current with DRX). The Current with DRX should be less than the current without DRX.

Table 9.2.1.2.6-1: Test Results

Test Step	Average Current(mA)
Step 5: without DRX	
Step 9: with DRX	

9.2.1.3 Connected Mode with DRX on SCG, Power Consumption, NSA

9.2.1.3.1 Test Purpose

When UE is in RRC Connected State after Registering in E-UTRAN and NR cell, measure the power consumption with DRX configured on SCG cell.

9.2.1.3.2 Reference specification

TS 38.304, TS 38.331, TS 38.300

9.2.1.3.3 Applicability

This test applies to Type 1 and Type 3 devices as described in clause 4.2

9.2.1.3.4 Test conditions

[SS configuration] Cell A is E-UTRAN Cell, CellB is a NR Cell. Cell A supports NSA

E-UTRAN Cell A Cell Id=01 TAC = 01 MCC-MNC = 460-00 EARFCN= f1 rootSequenceIndex = 0 Reference Signal EPRE= -85 dBm/15kHz upperLayerIndication-r15=true

NR Cell B Cell Id=02 TAC = 01 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -125 dBm/30kHz

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in NSA mode.

[Initial conditions]

SS

LTE Cell A and NR Cell B is not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

9.2.1.3.5 Test procedure

Table 9.2.1.3.5-1: Time of cell power level and parameter changes

Time	E-UTRAN Cell A	NR Cell B	Remark
то	-85	-90	

PREAMBLE

- 1. Activate E-UTRAN Cell A, NR Cell B.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 9.2.1.3.5-1.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure with activation of the initial default EPS bearer on Cell A (see 36.508, 4.5.2).
- 5. The SS sends an ue-CapabilityRequest including the RAT type "eutra-nr".
- 6. Verify the UE sends UECapabilityInformation message including the RAT type "eutra-nr".
- 7. The SS sends an RRCConnectionReconfiguration message containing NR RRCReconfiguration message to add Cell B as NR PS-Cell with SCG DRB.
- 8. The UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message

MAIN BODY

- 9. Keep the LTE RRC connection and NR RRC connection without DRX configured. Wait for 1 minutes and then start power consumption tester records the changes of current for another 3 minutes.
- 10. Stop power consumption measurement.
- 11. SS transmits RRCConnectionReconfiguration to configure specific DRX parameters on SCG NR Cell B. The DRX parameters are the same as in Table 9.2.1.2.5-3

- 12. UE transmits RRCConnectionReconfigurationComplete
- 13. Wait for 1 minutes and then start power consumption tester records the changes of current for another 3 minutes
- 14. Stop power consumption measurement.

POSTAMBLE

- 15. The SS initiates a Deregitration procedure.
- 16. The SS initiates a RRC release procedure.
- 17. Deactivate E-UTRAN Cell A and NR Cell B.

Step	Message Sequence				Verdict	
	U-S	Layer	Message	Specific Contents		
1	÷	RRC	Activate E-UTRAN Cell A and NR Cell B.			
2			SS configures the initial power according to			
			T0 in Table 9.2.1.3.5-1.			
3		UE	Switch On UE	AT Command		
4	\rightarrow	NAS	UE performs the registration procedure with		PASS	
	←	RRC	activation of the initial default EPS bearer on			
			Cell A (see 36.508, 4.5.2).			
5	←	RRC	The SS sends an ue-CapabilityRequest			
			including the RAT type "eutra-nr".			
6	\rightarrow	RRC	Verify the UE sends UECapabilityInformation		PASS	
			message including the RAT type "eutra-nr".			
7	÷	NAS	SS sends an RRCConnectionReconfiguration			
		RRC	message containing NR RRCReconfiguration			
			message to add Cell B as NR PS-Cell with SCG			
			DRB.			
8	\rightarrow	RRC	UE sends an		PASS	
			RRCConnectionReconfigurationComplete			
			message containing NR			
			RRCReconfigurationComplete message.			
9			Wait for 1 minutes and then start power	Without DRX	PASS	
			consumption tester records the changes of			
			current for another 3 minutes			
10			Stop power consumption measurement.			
11	÷	NAS	SS transmits RRCConnectionReconfiguration	Table 9.2.1.2.5-3 for		
		RRC	to configure specific DRX parameters.	DRX parameters		
12	\rightarrow	NAS	UE transmits		PASS	
	ļ	RRC	RRCConnectionReconfigurationComplete			
13			Wait for 1 minutes and then start power		PASS	
			consumption tester records the changes of			
			current for another 3 minutes			

Table 9.2.1.3.5-2: Message Sequence

14			Stop power consumption measurement.		
15	\rightarrow	NAS	S initiates a Deregistration procedure.		
	÷				
16	÷	RRC	SS initiates a RRC release procedure.		
17			Deactivate E-UTRAN Cell A and NR Cell B.		

9.2.1.3.6 Expected Result

Record the average current in step 9 (current without DRX) and step 13 (current with DRX on SCG). The Current with DRX on SCG should be less than the current without DRX.

Table 9.2.1.3.6-1: Test Results

Test Step	Average Current(mA)
Step 9: without DRX	
Step 13: with DRX on SCG	

9.2.1.4 Connected Mode with DRX on MCG and SCG, Power Consumption, NSA

9.2.1.4.1 Test Purpose

When UE is in RRC Connected State after Registering in E-UTRAN and NR cell, measure the power consumption with DRX configured on both MCG and SCG cell.

9.2.1.4.2 Reference specification

TS 38.304, TS 38.331, TS 38.300

9.2.1.4.3 Applicability

This test applies to Type 1 and Type 3 devices as described in clause 4.2

9.2.1.4.4 Test conditions

The same as in 9.2.1.3.4

9.2.1.4.5 Test procedure

The same as in 9.2.1.3.5 except step 11 . Step 11 is changed as following

" 11. SS transmits RRCConnectionReconfiguration to configure specific DRX parameters on MCG E-UTRAN Cell A and SCG NR Cell B. Refer to Table 9.2.1.4.59.2.1.2.5-1 for E-UTRAN DRX parameters for MCG and Table 9.2.1.4.59.2.1.2.5-2 for NR DRX parameters for SCG"

Derivation Path: TS 36.331, clause 6.3.2				
Information Element Value/remark Comment				
drx-Config CHOICE {				

Table 9.2.1.4.5-1: E-UTRAN DRX Parameters for MCG

setup SEQUENCE {		
onDurationTimer	psf8	
}		
drx-InactivityTimer	psf60	
drx-RetransmissionTimer	psf4	
longDRX-CycleStartOffset CHOICE {		
sf160	0	
}		
shortDRX	Not present	
}		
}		

Table 9.2.1.4.5-2: NR DRX Parameters for SCG

Derivation Path: TS 38.331 [6], clause 6.3.2		
Information Element	Value/remark	Comment
DRX-Config ::= SEQUENCE {		
drx-onDurationTimer CHOICE {		
milliSeconds	ms10	
}		
drx-InactivityTimer	[ms60]	
drx-HARQ-RTT-TimerDL	[14]	
drx-HARQ-RTT-TimerUL	[14]	
drx-RetransmissionTimerDL	[sl 8]	
drx-RetransmissionTimerUL	[sl 8]	
drx-LongCycleStartOffset CHOICE {		
ms160	0	
}		
shortDRX	not present	
drx-SlotOffset	0	
}		

9.2.1.4.6 Expected Result

Record the average current in step 9 (current without DRX) and step 13 (current with DRX on MCG and SCG). The Current with DRX on SCG should be less than the current without DRX.

Table 9.2.1.3.6-1: Test Results

Test Step	Average Current(mA)
Step 9: without DRX	
Step 13: with DRX on MCG and SCG	

9.2.2 Inter Frequency Handover, Power Consumption, LTE to LTE

9.2.2.1 Test Purpose

The UE Executes the handovers between Inter-Frequency LTE cells for many times with contention based random access procedure and verify the power consumption.

9.2.2.2 Reference specification

TS 36.300, TS 36.331, TS 38.300

9.2.2.3 Applicability

This test applies to the device that supports NSA or SA+NSA.

9.2.2.4 Test conditions

[SS configuration] Cell A and CellB are E-UTRAN Cells, CellC is a NR Cell. Cell A supports NSA

E-UTRAN Cell A Cell Id=01 TAC = 01 MCC-MNC = 460-00 EARFCN= f1 rootSequenceIndex = 0 Reference Signal EPRE= -85 dBm/15kHz upperLayerIndication-r15=true

E-UTRAN Cell B Cell Id=02 TAC = 02 MCC-MNC = 460-00 EARFCN= f2 rootSequenceIndex = 22 Reference Signal EPRE= -125 dBm/15kHz upperLayerIndication-r15=true

NR Cell C Cell Id=03 TAC = 01 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -125 dBm/30kHz

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in NSA mode.

[Initial conditions]

SS

E-UTRAN Cell A and Cell B are not active NR Cell C is not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

9.2.2.5 Test procedure

Table 5.1.1.5-1: Time of cell p	power level and	parameter changes
		purunicici chunges

Time	E-UTRAN Cell A	E-UTRAN Cell B	NR Cell C	Remark
т0	-85	-infinity	-90	Cell B shall be off
T1	-91	-85	-90	Cell B better than Cell A
T2	-85	-91	-90	Cell A better than Cell B

PREAMBLE

- 1. Activate E-UTRAN Cell A, NR Cell C.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 9.2.4.5-1.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure with activation of the initial default EPS bearer on Cell A (see 36.508, 4.5.2).
- 5. The SS sends an ue-CapabilityRequest including the RAT type "eutra-nr".
- 6. Verify the UE sends UECapabilityInformation message including the RAT type "eutra-nr".
- 7. The SS sends an RRCConnectionReconfiguration message containing NR RRCReconfiguration message to add Cell C as NR PS-Cell with Split DRB.
- 8. The UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.
- 9. Verify that Data tranfer(Ping) perofrmed on NR cell C

MAIN BODY

- 10. The SS initiate the RRCConnectionReconfiguration procedure to configure the A4 measurement event to measure cell B
- 11. The SS changes the power levels according to T1 in Table 9.2.4.5-1.
- 12. The UE perrforms measurements on Cell B and provides measurement reports (Event A4) to SS
- The SS initiates the handover procedure to Cell B with adding and releasing same PS-Cell(NR Cell C) and RRCConnectionReconfiguration doesn't contain a dedicated PRACH preamble to make Contention based RACH procedure in cell B
- 14. The UE completes the Handover in Cell B by sending RRCConnectionReconfiguration Complete to the SS
- 15. Measure the minimum, maximum, average power consumption during the random access

procedure between step 13 and 14.

- 16. Verify that Data transfer(Ping) performed on NR Cell C
- 17. The SS initiate the RRCConnectionReconfiguration procedure to configure the A4 measurement event to measure cell A
- 18. The SS changes the power levels according to T2 in Table 9.2.4.5-1
- 19. The UE perrforms measurements on Cell A and provides measurement reports (Event A4) to SS
- 20. The SS initiates the handover procedure to Cell A with adding and releasing same PS-Cell(NR Cell C) and RRCConnectionReconfiguration doesn't contain a dedicated PRACH preamble to make Contention based RACH procedure in cell A
- 21. The UE completes the Handover in Cell A by sending RRCConnectionReconfiguration Complete to the SS
- 22. Measure the minimum, maximum, average power consumption during the random access procedure between step 20 and 21.
- 23. Verify that Data transfer(Ping) performed on NR Cell C
- 24. Get the value of power consumption tester and calulate the power consumption
- 25. The handover procedure between 10 to 24 are repeated for four times
- 26. Calculate the overall minimum, maximum and average power consumption values

POSTAMBLE

- 27. The SS initiates a Detach procedure.
- 28. The SS initiates a RRC release procedure.
- 29. Deactivate E-UTRAN Cell A, Cell B and NR Cell C.

Step	Message Sequence				
	U-S	Layer	Message	Specific Contents	-
			Connect the power consumption tester to		
			the UE		
1	÷	RRC	Activate E-UTRAN Cell A, Cell B and NR Cell C.		
2			SS configures the initial power according to		
			T0 in Table 9.2.4.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure with		PASS
	←	RRC	activation of the initial default EPS bearer on		
			Cell A (see 36.508, 4.5.2).		
5	÷	RRC	The SS sends an ue-CapabilityRequest		
			including the RAT type "eutra-nr".		
6	\rightarrow	RRC	Verify the UE sends UECapabilityInformation		PASS
			message including the RAT type "eutra-nr".		
7	←	NAS	SS sends an RRCConnectionReconfiguration		
		RRC	message containing NR RRCReconfiguration		
			message to add Cell B as NR PS-Cell with Split		
			DRB.		

Table 9.2.2.55.1.1.5-2: Message Sequence

GTI 5G Function and Performance Test Specification v4.2 – September 2021

0	`	DDC	115 aanda	DAGG	
8	\rightarrow	RRC	UE sends an	PASS	
			RRCConnectionReconfigurationComplete		
			message containing NR		
			RRCReconfigurationComplete message.		
9			Verify the data transmission is performed	PASS	
			successfully on NR Cell C.		
10	÷	RRC	RRC Connection Reconfiguration procedure		
	\rightarrow		to UE to configure the measurement Event		
			for Cell B		
11			TX Power modification according to step T1		
			in table 9.2.4.5-1		
12	\rightarrow	RRC	Measurement Report (Event A4)	PASS	
13	←	RRC	RRC Connection Reconfiguration to the UE to		
			Handover to Cell B		
14	\rightarrow	RRC	UE inititates RACH procedure in Cell B and	PASS	
			send RRC Connection Reconfiguration		
			complete to SS		
15			Get the maximum, minimum and average		
			power consumption during the random		
			access procedure between step 13 and 14		
16			Verify the data transmission is performed	PASS	
			successfully on NR Cell C.		
17	÷	RRC	RRC Connection Reconfiguration procedure		
	\rightarrow		to UE to configure the measurement Event		
			for Cell A		
18			TX Power modification according to step T2		
			in table 9.2.4.5-1		
19	\rightarrow	RRC	Measurement Report (Event A4)	PASS	
20	←	RRC	RRC Connection Reconfiguration to the UE to		
			Handover to Cell A		
21	\rightarrow	RRC	UE inititates RACH procedure in Cell A and	PASS	
			send RRC Connection Reconfiguration		
			complete to SS		
22			Get the maximum, minimum and average		
			power consumption during the random		
			access procedure between step 20 and 21		
23			Verify the data transmission is performed	PASS	
23			successfully on NR Cell C.		
24			Get the value of power consumption tester		
24			and calulate the power consumption		
25			Depend the Landouer ground dury (hoturger 40)		
25			Repeat the Handover procedure (between 10		

			to 24) for four times	
26			Calculate the overall minimum, maximum and average power consumption values	
27	\rightarrow	NAS	SS initiates a Detach procedure.	PASS
	←			
28	÷	RRC	SS initiates a RRC release procedure.	
29			Deactivate E-UTRAN Cell A, Cell B and NR Cell	
			С.	

9.2.2.6 Expected Result

The Current Should be less than [TBD]mA

9.2.3 Inter Frequency Handover, Power Consumption, NR Cell

9.2.3.1 Test Purpose

When UE enters inter frequency handover procedure , measure the power consumption.

9.2.3.2 Reference specification

TS 38.304, TS 38.331, TS 38.300

9.2.3.3 Applicability

This test applies to the device that supports SA or SA+NSA.

9.2.3.4 Test conditions

[SS configuration] Cell A and B are inter frequency NR Cell. Cell A and B support only SA

NR Cell A Cell Id=01 TAC = 01 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -125 dBm/30kHz

NR Cell B Cell Id=02 TAC = 01 MCC = 460 MNC = 00 NR-ARFCN= f2 SS/PBCH SSS EPRE = -125 dBm/30kHz

[UE configuration]

The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode.

UE works in SA mode.

[Initial conditions]

SS

NR Cell A and Cell B are not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

9.2.3.5 Test procedure

Table 5 1 1 5-1. Time	of cell nower leve	el and parameter changes
	or cell power leve	er and parameter changes

Time	NR Cell A	NR Cell B	Remark
то	-90	-95	
T1	-106	-90	For Blind Handover
T2	-90	-106	For Blind Handover

PREAMBLE

- 1. Activate NR Cell A.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 9.2.3.5-1.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure on Cell A (see TS 38.508-1, Table 4.5.2.2-2 till Step 19a1).
- 5. Verify that Data tranfer(Ping) perofrmed on NR cell A.
- 6. SS reconfigures the cell power level according to T1 in Table 9.2.3.5-1

MAIN BODY

- 7. Start power consumption tester to record the changes of current and voltage of handover procedure.
- 8. The SS send RRCReconfiguration message to make handover from Cell A to Cell B.
- 9. Verify that RACH procedure is successful and UE send RRC ReconfigurationComplete in Cell B
- 10. Get the value of power consumption tester between step 8 and 9
- 11. SS reconfigures the cell power level according to T2 in Table 9.2.3.5-1
- 12. The SS sends RRCReconfiguration message to make handover from Cell B to Cell A
- 13. Verify that RACH procedure is successful and UE send RRCReconfiguration Complete in Cell A
- 14. Get the value of power consumption tester between step 12 and 13.
- 15. Repeat Step 8 to 13 for four times and calculate the overall average power consumption at the time of handover procedure

POSTAMBLE

- 16. The SS initiates a Deregitration procedure.
- 17. The SS initiates a RRC release procedure.

18. Deactivate NR Cell A and Cell B.

Step		Message Sequence		Verdict	
	U-S	Layer	Message	Specific Contents	
			Connect the power consumption tester to		
			the UE		
1			Activate NR Cell A.		
2			SS configures the initial power according to		
			T0 in Table 9.2.3.5-1.		
3			Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure (see		PASS
	~	RRC	TS 38.508-1, Table 4.5.2.2-2 till Step 19a1).		
5			Verify the data transmission is performed		PASS
			successfully on NR Cell A.		
6			SS reconfigures the cell power level according		
			to T1 in Table 9.2.3.5-1		
7			Start power consumption tester to record the		
			changes of current and voltage of handover		
			procedure		
8	←	RRC	The SS sendsRRC Reconfiguration message to		
			make handover from Cell A to Cell B		
9	\rightarrow	RRC	UE sends RRCReconfigurationComplete in		PASS
			Cell B		
10			Get the power consumption tester values at		
			the time of handover between step 8 and 9		
11			SS reconfigures the cell power level		
			according to T2 in Table 9.2.3.5-1		
12	÷	RRC	The SS sends RRCReconfiguration message to		PASS
			make handover from Cell B to Cell A		
13	\rightarrow	RRC	UE sends RRCReconfigurationComplete in		
			Cell A		
14			Get the power consumption tester values at		
			the time of handover between step 12 and		
			13		
15			Repeat steps between 8 to 14 for 4 times and		PASS
			calculate the overall average power		
			consumption value for handover procedure		
16	\rightarrow	NAS	SS initiates a Deregitration procedure.		PASS
	~				
17	~	RRC	SS initiates a RRC release procedure.		
18			Deactivate NR Cell A and B.		

Table 5.1.1.5-2: Message Sequence

The current should be less than [TBD]mA

9.3 Voice (VoLTE/VoNR)

9.3.1 VoLTE MO Call with E-UTRAN Cell, Power Consumption

9.3.1.1 Test Purpose

To measure the average current of MO VoLTE call procedure when call is ongoing in good coverage area.

9.3.1.2 Reference specification

TS 36.508, TS 24.299, RFC 4867

9.3.1.3 Applicability

This test applies to the device that supports NSA or SA+NSA.

This test applies to the device that supports VoLTE

9.3.1.4 Test conditions

[SS configuration] Cell A is E-UTRAN Cell, CellB is a NR Cell. Cell A supports NSA and VoLTE

E-UTRAN Cell A Cell Id=01 TAC = 01 MCC-MNC = 460-00 EARFCN= f1 rootSequenceIndex = 0 Reference Signal EPRE= -85 dBm/15kHz upperLayerIndication-r15=true

NR Cell B Cell Id=02 TAC = 01 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -125 dBm/30kHz

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in NSA mode. IMS VoLTE Feature should be enabled on DUT

[Initial conditions]

SS

E-UTRAN Cell A is not active NR Cell B is not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

9.3.1.5 Test procedure

Table 5.1.1.5-1: Time of cell power level and parameter changes

Time	E-UTRAN Cell A	NR Cell C	Remark
то	-85	-90	

PREAMBLE

- 1. Activate E-UTRAN Cell A, NR Cell B.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 9.3.1.5-1.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure with activation of the initial default EPS bearer on Cell A (see 36.508, 4.5.2).
- 5. The SS sends an ue-CapabilityRequest including the RAT type "eutra-nr".
- 6. Verify the UE sends UECapabilityInformation message including the RAT type "eutra-nr".
- 7. The SS sends an RRCConnectionReconfiguration message containing NR RRCReconfiguration message to add Cell B as NR PS-Cell with Split DRB.
- 8. The UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.
- 9. UE inititaes the PDN connectivity procedure for the IMS PDN and Default EPS procedure for IMS PDN is completed in Cell A.
- 10. IMS Registration is successful in Cell A
- 11. Verify that Data tranfer(Ping) perofrmed on NR cell B

MAIN BODY

- 12. start power consumption tester records the changes of current and voltage and start the MO VoLTE call
- 13. Verify the RTP packet flow between UE and SS in both directions and stop the VoLTE call after 3 minutes
- 14. Stop the power consumption measurement and calculate the average current for VoLTE call

POSTAMBLE

- 15. The SS initiates a Detach procedure.
- 16. The SS initiates a RRC release procedure.
- 17. Deactivate E-UTRAN Cell A and NR Cell B.

	1		• .		1
Step		1	Message Sequence	Γ	Verdict
	U-S	Layer	Message	Specific Contents	
			Connect the power consumption tester to		
			the UE		
1	←	RRC	Activate E-UTRAN Cell A and NR Cell B.		
2			SS configures the initial power according to		
			T0 in Table 9.3.1.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure with		PASS
	←	RRC	activation of the initial default EPS bearer on		
			Cell A (see 36.508, 4.5.2).		
5	←	RRC	The SS sends an ue-CapabilityRequest		
			including the RAT type "eutra-nr".		
6	\rightarrow	RRC	Verify the UE sends UECapabilityInformation		PASS
			message including the RAT type "eutra-nr".		
7	÷	NAS	SS sends an RRCConnectionReconfiguration		
		RRC	message containing NR RRCReconfiguration		
			message to add Cell B as NR PS-Cell with Split		
			DRB.		
8	\rightarrow	RRC	UE sends an		PASS
			RRCConnectionReconfigurationComplete		
			message containing NR		
			RRCReconfigurationComplete message.		
9	\rightarrow		UE initiates the PDN Connectivity Procedure		
	←		for IMS PDN		
10	\rightarrow		IMS Registration Procedure is successful in		PASS
	←		Cell A		
11			Verify the data transmission is performed		PASS
			successfully on NR Cell B.		
12	\rightarrow		Start the power consumption recorder for		
	÷		current measurements and Start MO VoLTE		
			call		
13			Verify the RTP packet flow between UE and		PASS
			SS and stop the VoITE call after 3 minutes		
14			Stop the power consumption and calculte the		
			average current of the VoLTE call		
15	\rightarrow	NAS	SS initiates a Detach procedure.		PASS
	÷				
16	÷	RRC	SS initiates a RRC release procedure.		
17			Deactivate E-UTRAN Cell A and NR Cell B.		

Table 5.1	15 2. 14		auonco
Table 5.1	.1.J-Z: IVI	lessage se	quence

9.3.1.6 Expected Result

Record the test results of the current

9.3.2 VoNR MO call, Power Consumption

9.3.2.1 Test Purpose

To measure the average current of VoNR call for the MO call

9.3.2.2 Reference specification

TS 38.304, TS 38.331, TS 38.300

9.3.2.3 Applicability

This test applies to the device that supports SA or SA+NSA.

9.3.2.4 Test conditions

[SS configuration] Cell A is a NR Cell. Cell A supports only SA

NR Cell A Cell Id=01 TAC = 01 MCC = 460 MNC = 00 NR Band = n41 NR-ARFCN= f1 Bandwidth = 100 MHz SS/PBCH SSS EPRE = -125 dBm/30kHz PDN = IMS PDN

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in SA mode.

[Initial conditions]

SS

NR Cell A is not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

9.3.2.5 Test procedure

Table 5.1.1.5-1: Time of cell power level and parameter changes

Time	NR Cell A	Remark
то	-75	

PREAMBLE

- 1. Activate NR Cell A.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 9.3.2.5-1.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure on Cell A (see 38.508, Table 4.5.2.2-2 till Step 18).
- 5. UE sends REGISTER message
- 6. SS responds to REGISTER with 401 Unauthorized
- 7. UE sends REGISTER again with proper IPSec settings and SS responds with 200 OK
- 8. UE sends SUBSCRIBE message and the SS responds with with 200 OK
- 9. SS sends NOTIFY. The UE responds NOTIFY with 200 OK

MAIN BODY

- 10. Initiate the MO IMS call
- 11. UE sends INVITE Request
- 12. SS transmits 100 Trying and 183 Session Progress
- 13. UE sends PRACK and SS responds with 200 OK
- 14. SS transmits PDU session establishment request for voice call
- 15. UE sends PDU session establishment accept
- 16. SS transmits 180 ringing and 200 OK for INVITE
- 17. UE sends ACK for 200 OK
- 18. Start the power consumption tester
- 19. Verify if RTP packets are ongoing to confirm successful call progress and keep the call active for 3 minutes
- 20. Stop the power consumption measurement and note down the current values
- 21. UE initiates the call release procedure

POSTAMBLE

- 22. The SS initiates a Deregitration procedure.
- 23. The SS initiates a RRC release procedure.
- 24. Deactivate NR Cell A.

Step		Message Sequence			
	U-S	Layer	Message	Specific Contents	
			Connect the power consumption tester to		
			the UE		
1	÷	RRC	Activate NR Cell A.		
2			SS configures the initial power according to		

Table 5.1.1.5-2: Message Seq	uence
------------------------------	-------

			T0 in Table 9.3.2.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure (see		PASS
	←	RRC	38.508, Table 4.5.2.2-2 till Step 18).		
5	\rightarrow	SIP	REGISTER		
6	÷	SIP	401 Unauthorized		
7	\rightarrow	SIP	UE sends REGISTER via IPSec and SS responds		PASS
	÷		with 200 OK		
8	\rightarrow	SIP	UE sends SUBSCRIBE Message. The SS		
	÷		responds SUBSCRIBE with 200 OK		
9	\rightarrow	SIP	SSsends NOTIFY. The UEresponds NOTIFY		
	÷		with 200 OK		
10			Initiate the MO IMS call		
11	\rightarrow	SIP	INVITE		PASS
12	\rightarrow	SIP	SS responses with 183 Session Progress		
	÷				
13	\rightarrow	SIP	UE sends PRACK and ss responds with 200 OK		
	÷				
14	÷	NAS	PDU session establishment request		
15	\rightarrow	NAS	PDU session establishment accept		
16	÷	SIP	SS transmits 180 ringing and 200 OK for		
			INVITE		
17	\rightarrow	SIP	UE sends ACK for 200 OK		
18			Start the power consumption tester		
19			Verify the bidirectional RTP packet flow and		PASS
			keep the call active for 3 minutes		
20			Stop the power consumption measurements		
			and note down the measurements		
21	\rightarrow	RRC	UE initiates clear call procedure		
	÷	SIP			
22	\rightarrow	NAS	SS initiates a Deregitration procedure.		PASS
	÷				
23	÷	RRC	SS initiates a RRC release procedure.		
24			Deactivate NR Cell A.		

9.3.2.6 Expected Result

The Current Should be less than [TBD]mA

9.3.3 VoLTE MT Call with E-UTRAN Cell, Power Consumption

9.3.3.1 Test Purpose

To measure the average current of MT VoLTE call procedure when call is ongoing in good coverage area.

9.3.3.2 Reference specification

TS 36.508, TS 24.299, RFC 4867

9.3.3.3 Applicability

This test applies to the device that supports NSA or SA+NSA.

This test applies to the device that supports VoLTE

9.3.3.4 Test conditions

[SS configuration] Cell A is E-UTRAN Cell, CellB is a NR Cell. Cell A supports NSA and VoLTE

E-UTRAN Cell A Cell Id=01 TAC = 01 MCC-MNC = 460-00 EARFCN= f1 rootSequenceIndex = 0 Reference Signal EPRE= -85 dBm/15kHz upperLayerIndication-r15=true

NR Cell B Cell Id=02 TAC = 01 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -125 dBm/30kHz

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in NSA mode. IMS VoLTE Feature should be enabled on DUT

[Initial conditions]

SS

E-UTRAN Cell A is not active NR Cell B is not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

9.3.3.5 Test procedure

Time	E-UTRAN Cell A	NR Cell C	Remark
то	-85	-90	

Table 5.1.1.5-1: Time of cell power level and parameter changes

PREAMBLE

- 1. Activate E-UTRAN Cell A, NR Cell B.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 9.3.3.5-1.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure with activation of the initial default EPS bearer on Cell A (see 36.508, 4.5.2).
- 5. The SS sends an ue-CapabilityRequest including the RAT type "eutra-nr".
- 6. Verify the UE sends UECapabilityInformation message including the RAT type "eutra-nr".
- 7. The SS sends an RRCConnectionReconfiguration message containing NR RRCReconfiguration message to add Cell B as NR PS-Cell with Split DRB.
- 8. The UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.
- 9. UE inititaes the PDN connectivity procedure for the IMS PDN and Default EPS procedure for IMS PDN is completed in Cell A.
- 10. IMS Registration is successful in Cell A
- 11. Verify that Data tranfer(Ping) perofrmed on NR cell B

MAIN BODY

- 12. start power consumption tester records the changes of current and voltage and start the MT VoLTE call from tester
- 13. Verify the RTP packet flow between UE and SS in both directions and stop the VoLTE call after 3 minutes
- 14. Stop the power consumption measurement and calculate the average current for VoLTE call

POSTAMBLE

- 15. The SS initiates a Detach procedure.
- 16. The SS initiates a RRC release procedure.
- 17. Deactivate E-UTRAN Cell A and NR Cell B.

Step		Message Sequence			
	U-S	-S Layer Message		Specific Contents	
		Connect the power consumption tester to			
			the UE		
1	←	RRC	Activate E-UTRAN Cell A and NR Cell B.		
2		SS configures the initial power according to			
			T0 in Table 9.3.3.5-1.		

Table 5.1.1.5-2: Message Sequence

GTI 5G Function and Performance Test Specification v4.2 – September 2021

3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure with		PASS
	←	RRC	activation of the initial default EPS bearer on		
			Cell A (see 36.508, 4.5.2).		
5	÷	RRC	The SS sends an ue-CapabilityRequest		
			including the RAT type "eutra-nr".		
6	\rightarrow	RRC	Verify the UE sends UECapabilityInformation		PASS
			message including the RAT type "eutra-nr".		
7	÷	NAS	SS sends an RRCConnectionReconfiguration		
		RRC	message containing NR RRCReconfiguration		
			message to add Cell B as NR PS-Cell with Split		
			DRB.		
8	\rightarrow	RRC	UE sends an		PASS
			RRCConnectionReconfigurationComplete		
			message containing NR		
			RRCReconfigurationComplete message.		
9	\rightarrow		UE initiates the PDN Connectivity Procedure		
	÷		for IMS PDN		
10	\rightarrow		IMS Registration Procedure is successful in		PASS
	÷		Cell A		
11			Verify the data transmission is performed		PASS
			successfully on NR Cell B.		
12	\rightarrow		Start the power consumption recorder for		
	÷		current measurements and Start MT VoLTE		
			call from SS		
13			Verify the RTP packet flow between UE and		PASS
			SS and stop the VoITE call after 3 minutes		
14			Stop the power consumption and calculte the		
			average current of the VoLTE call		
15	\rightarrow	NAS	SS initiates a Detach procedure.		PASS
	←				
16	÷	RRC	SS initiates a RRC release procedure.		
17			Deactivate E-UTRAN Cell A and NR Cell B.		

9.3.3.6 Expected Result

Record the test results of the current

9.3.4 VoNR MT call, Power Consumption

9.3.4.1 Test Purpose

To measure the average current of VoNR call for the MT call.

9.3.4.2 Reference specification

TS 38.304, TS 38.331, TS 38.300

9.3.4.3 Applicability

This test applies to the device that supports SA or SA+NSA

9.3.4.4 Test conditions

[SS configuration] Cell A is a NR Cell. Cell A supports only SA

NR Cell A Cell Id=01 TAC = 01 MCC = 460 MNC = 00 NR Band = n41 NR-ARFCN= f1 Bandwidth = 100 MHz SS/PBCH SSS EPRE = -125 dBm/30kHz PDN = IMS PDN

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in SA mode.

[Initial conditions] SS NR Cell A is not active

The test shall be performed under ideal radio conditions. UE UE is powered off

9.3.4.5 Test procedure

Table 5.1.1.5-1: Time of cell power level and parameter changes

Time	NR Cell A	Remark
то	-75	

PREAMBLE

- 1. Activate NR Cell A.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 9.3.4.5-1.

- 3. The UE is powered ON.
- 4. The UE performs the registration procedure on Cell A (see 38.508, Table 4.5.2.2-2 till Step 18).
- 5. UE sends REGISTER message
- 6. SS responds to REGISTER with 401 Unauthorized
- 7. UE sends REGISTER again with proper IPSec settings and SS responds with 200 OK
- 8. UE sends SUBSCRIBE message and the SS responds with with 200 OK
- 9. SS sends NOTIFY. The UE responds NOTIFY with 200 OK

MAIN BODY

- 10. Initiate the MT IMS call
- 11. SS sends INVITE Request
- 12. UE transmits 100 Trying and 183 Session Progress
- 13. SS sends PRACK and SS responds with 200 OK
- 14. SS transmits PDU session establishment request for voice call
- 15. UE sends PDU session establishment accept
- 16. UE transmits 180 ringing and 200 OK for INVITE
- 17. SS sends ACK for 200 OK
- 18. Start the power consumption tester
- 19. Verify if RTP packets are ongoing to confirm successful call progress and keep the call active for 3 minutes
- 20. Stop the power consumption measurement and note down the current values
- 21. SS initiates the call release procedure

POSTAMBLE

- 22. The SS initiates a Deregitration procedure.
- 23. The SS initiates a RRC release procedure.
- 24. Deactivate NR Cell A.

Step		Message Sequence			
	U-S	Layer	Message	Specific Contents	
			Connect the power consumption tester to		
			the UE		
1	←	RRC	Activate NR Cell A.		
2			SS configures the initial power according to		
			T0 in Table 9.3.2.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure (see		PASS
	←	RRC	38.508, Table 4.5.2.2-2 till Step 18).		
5	\rightarrow	SIP	REGISTER		
6	÷	SIP	401 Unauthorized		
7	\rightarrow	SIP	UE sends REGISTER via IPSec and SS responds		PASS

Table 5.1.1.5-2: Message Sequence

GTI 5G Function and Performance Test Specification v4.2 – September 2021

	-			
	\		with 200 OK	
8	\rightarrow	SIP	UE sends SUBSCRIBE Message. The SS	
	←		responds SUBSCRIBE with 200 OK	
9	\rightarrow	SIP	SSsends NOTIFY. The UEresponds NOTIFY	
	←		with 200 OK	
10			Initiate the MT IMS call	
11	←	SIP	INVITE	PASS
12	\rightarrow	SIP	UE responses with 183 Session Progress	
	←			
13	\rightarrow	SIP	SS sends PRACK and ss responds with 200 OK	
	←			
14	\rightarrow	NAS	PDU session establishment request	
15	←	NAS	PDU session establishment accept	
16	\rightarrow	SIP	UE transmits 180 ringing and 200 OK for	
			INVITE	
17	÷	SIP	SS sends ACK for 200 OK	
18			Sart the power consumption tester	
19			Verify the bidirectional RTP packet flow and	PASS
			keep the call active for 3 minutes	
20			Stop the power consumption measurements	
			and note down the measurements	
21	\rightarrow	RRC	SS initiates clear call procedure	
	←	SIP		
22	\rightarrow	NAS	SS initiates a Deregitration procedure.	PASS
	←			
23	←	RRC	SS initiates a RRC release procedure.	
24			Deactivate NR Cell A.	

9.3.4.6 Expected Result

The Current Should be less than [TBD]mA

9.4 Data Transmission, Power Consumption

9.4.1 UL Data Transmission, Power Consumption, SA

9.4.1.1 Power Consumption with UL Data Transfer, SA (UL Single Tx – 64 QAM)

9.4.1.1.1 Test Purpose

Setup a Data bearer with NR cell with typical transmit level. Measure the power consumption when UE transmits TCP data with uplink 64QAM

9.4.1.1.2 Reference specification

TS 38.508, TS 38.331, TS 38.300

9.4.1.1.3 Applicability

This test applies to Type 1 and Type 2 devices as described in clause 4.2.

9.4.1.1.4 Test conditions

[SS configuration] Cell A is a NR Cell. Cell A supports SA

NR Cell A Cell Id=01 TAC = 01 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -125 dBm/30kHz RB Allocation UL = Full

UL Modulation / Coding = 28 mcs-Table in PUSCH-Config = qam64 P Max = 3 dBm

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in SA mode.

```
[Initial conditions]
```

SS

NR Cell A is not active UL MCS = 18

The test shall be performed under ideal radio conditions.

UE

UE is powered off

9.4.1.1.5 Test procedure

Table 5.1.1.5-1: Time of cell power level and parameter changes

Time	NR Cell A	Remark
то	-90	

PREAMBLE

- 1. Activate NR Cell A.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 9.4.1.1.5-1.

- 3. The UE is powered ON.
- 4. The UE performs the registration procedure on Cell A (see 38.508, Table 4.5.2.2 till Step 18).

MAIN BODY

- 5. The power consumption tester records the changes of current.
- 6. Setup a TCP session and verify that UE uploads data correctly. Verify that UE TX power meeting the requirement in test conditions. Keep the service for 5 minutes.
- 7. Get the value of power consumption tester during step 6 and calculate the average TCP throughput
- 8. Repeat Step 6 and 7 for one more time
- 9. Calculate the overall average power consumption and TCP throughput

POSTAMBLE

- 10. The SS initiates a Deregistration procedure.
- 11. The SS initiates a RRC release procedure.
- 12. Deactivate NR Cell A.

Step	Message Sequence			Verdict	
	U-S	Layer	Message	Specific Contents	
			Connect the power consumption tester to		
			the UE		
1	←	RRC	Activate NR Cell A.		
2			SS configures the initial power according to		
			T0 in Table 9.4.1.1.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure (see		PASS
	←	RRC	38.508, Table 4.5.2.2 till Step 18).		
5			Power consumption tester records the		
			chnages of current and voltage		
6	÷	UE	UE uploads the data correctly in NR Cell A.		PASS
			Keep services for 5 minutes		
7			Get the power concumption tester values		
			and note down the TCP throughput value		
8			Repeat step 6 and 7 for one more time		
9			Calculate the overall average power		
			consumption value and TCP Data throughput		
			value		
10	\rightarrow	NAS	SS initiates a Deregistration procedure.		PASS
	←				
11	÷	RRC	SS initiates a RRC release procedure.		
12			Deactivate NR Cell A.		

Table 5.1.1.5-2: Message Sequence

9.4.1.1.6 Expected Result

Record the average TCP throughput and current in the following Table. The Current Should be less than [TBD]mA

UL TCP Throughput(Mbps)	Average Current(mA)

9.4.1.2 Power Consumption with UL Data Transfer, SA (UL 2 Tx - 64 QAM)

9.4.1.2.1 Test Purpose

Setup a Data bearer with NR cell with typical transmit level. Measure the power consumption when UE transmits TCP data with uplink 64QAM and 2X2 MIMO

9.4.1.2.2 Reference specification

TS 38.508, TS 38.331, TS 38.300

9.4.1.2.3 Applicability

This test applies to Type 1 and Type 2 devices as described in clause 4.2.

9.4.1.2.4 Test conditions

[SS configuration] Cell A is a NR Cell. Cell A supports SA

NR Cell A Cell Id=01 TAC = 01 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -125 dBm/30kHz RB Allocation UL = Full

UL Modulation / Coding = 28 mcs-Table in PUSCH-Config = qam64 P_Max = 0 dBm UL MIMO = 2X2

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in SA mode.

[Initial conditions] SS

NR Cell A is not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

9.4.1.2.5 Test procedure

Table 5.1.1.5-1: Time of ce	ll power level and	parameter changes

Time	NR Cell A	Remark
ТО	-90	

PREAMBLE

- 1. Activate NR Cell A.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 9.4.1.2.5-1.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure on Cell A (see 38.508, Table 4.5.2.2 till Step 18).

MAIN BODY

- 5. The power consumption tester records the changes of current.
- 6. Setup a TCP session and verify that UE uploads data correctly. Verify that UE TX power meeting the requirement in test conditions. Keep the service for 5 minutes
- 7. Get the value of power consumption tester during step 6 and calculate the average TCP throughput
- 8. Repeat Step 6 and 7 for one more time
- 9. Calculate the overall average power consumption and TCP throughput

POSTAMBLE

- 10. The SS initiates a Deregistration procedure.
- 11. The SS initiates a RRC release procedure.
- 12. Deactivate NR Cell A.

Step	Message Sequence				Verdict
	U-S	Layer	Message	Specific Contents	
			Connect the power consumption tester to		
			the UE		
1	←	RRC	Activate NR Cell A.		
2			SS configures the initial power according to		
			T0 in Table 9.4.1.2.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure (see		PASS
	÷	RRC	38.508, Table 4.5.2.2 till Step 18).		
5			Power consumption tester records the		

Table 5.1.1.5-2: Message Sequence

GTI 5G Function and Performance Test Specification v4.2 – September 2021

			chnages of current and voltage		
6	÷	UE	UE uploads the data correctly in NR Cell A.		PASS
			Keep services for 5 minutes		
7			Get the power concumption tester values		
			and note down the TCP throughput value		
8			Repeat step 6 and 7 for one more times		
9			Calculate the overall average power		
			consumption value and TCP Data throughput		
			value		
10	\rightarrow	NAS	SS initiates a Deregistration procedure.		PASS
	←				
11	÷	RRC	SS initiates a RRC release procedure.		
12			Deactivate NR Cell A.		

9.4.1.2.6 Expected Result

Record the average TCP throughput and current in the following Table. The Current Should be less than [TBD]mA

Table 9.4.1.2.6-1: Average throughput and current

UL TCP Throughput(Mbps)	Average Current(mA)

9.4.1.3 Power Consumption with UL Data Transfer, SA (UL Single Tx – 256 QAM)

9.4.1.3.1 Test Purpose

Setup a Data bearer with NR cell with maximum transmit level at UE. Measure the power consumption when UE transmits TCP data with uplink 256QAM

9.4.1.3.2 Reference specification

TS 38.508, TS 38.331, TS 38.300

9.4.1.3.3 Applicability

This test applies to Type 1 and Type 2 devices as described in clause 4.2.

9.4.1.3.4 Test conditions

[SS configuration] Cell A is a NR Cell. Cell A supports SA

NR Cell A Cell Id=01 TAC = 01 MCC = 460 MNC = 00

GTI 5G Function and Performance Test Specification v4.2 – September 2021

NR-ARFCN= f1 SS/PBCH SSS EPRE = -125 dBm/30kHz RB Allocation UL = Full

UL Modulation / Coding = 25 mcs-Table in PUSCH-Config = qam256 P Max = 16 dBm

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in SA mode.

[Initial conditions]

SS

NR Cell A is not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

9.4.1.3.5 Test procedure

Table 5.1.1.5-1: Time of cell power level and parameter changes

Time	NR Cell A	Remark
TO	-90	

PREAMBLE

- 1. Activate NR Cell A.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 9.4.1.3.5-1.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure on Cell A (see 38.508, Table 4.5.2.2 till Step 18).

MAIN BODY

- 5. The power consumption tester records the changes of current.
- 6. Setup a TCP session and verify that UE uploads data correctly. Verify that UE TX power meeting the requirement in test conditions. Keep the service for 5 minutes
- 7. Get the value of power consumption tester during step 6 and calculate the average TCP throughput
- 8. Repeat Step 6 and 7 for one more time
- 9. Calculate the overall average power consumption and TCP throughput

POSTAMBLE

- 10. The SS initiates a Deregistration procedure.
- 11. The SS initiates a RRC release procedure.

12. Deactivate NR Cell A.

Step	Message Sequence		Verdict		
	U-S	Layer	Message	Specific Contents	
			Connect the power consumption tester to		
			the UE		
1	÷	RRC	Activate NR Cell A.		
2			SS configures the initial power according to		
			T0 in Table 9.4.1.3.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure (see		PASS
	÷	RRC	38.508, Table 4.5.2.2 till Step 18).		
5			Power consumption tester records the		
			chnages of current and voltage		
6	÷	UE	UE uploads the data correctly in NR Cell A.		PASS
			Keep services for 5 minutes		
7			Get the power concumption tester values		
			and note down the TCP throughput value		
8			Repeat step 6 and 7 for one more time		
9			Calculate the overall average power		
			consumption value and TCPData throughput		
			value		
10	\rightarrow	NAS	SS initiates a Deregistration procedure.		PASS
	÷				
11	←	RRC	SS initiates a RRC release procedure.		
12			Deactivate NR Cell A.		

Table 9.4.1.3.55.1.1.5-2: Message S	anianca
Iable 3.4.1.3.33.1.1.3-2. Message 3	equence

9.4.1.3.6 Expected Result

Record the average TCP throughput and current in the following Table. The Current Should be less than [TBD]mA

Table 9.4.1.3.6-1: Average throughput and current

UL TCP Throughput(Mbps)	Average Current(mA)

9.4.1.4 Power Consumption with UL Data Transfer, SA (UL 2 Tx – 256 QAM)

9.4.1.4.1 Test Purpose

Setup a Data bearer with NR cell with maximum transmit level at UE. Measure the power consumption when UE transmits TCP data with uplink 256QAM and 2X2 MIMO

9.4.1.4.2 Reference specification

TS 38.508, TS 38.331, TS 38.300

9.4.1.4.3 Applicability

This test applies to Type 1 and Type 2 devices as described in clause 4.2.

9.4.1.4.4 Test conditions

[SS configuration] Cell A is a NR Cell. Cell A supports SA

NR Cell A

```
Cell Id=01 TAC = 01
MCC = 460 MNC = 00
NR-ARFCN= f1
SS/PBCH SSS EPRE = -125 dBm/30kHz
RB Allocation UL = Full
UL Modulation / Coding = 25
mcs-Table in PUSCH-Config = qam256
P_Max = 16 dBm
UL MIMO = 2X2
```

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in SA mode.

[Initial conditions]

SS

NR Cell A is not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

9.4.1.4.5 Test procedure

Table 5.1.1.5-1: Time of cell power level ar	nd parameter changes
--	----------------------

Time	NR Cell A	Remark
то	-90	

PREAMBLE

1. Activate NR Cell A.The SS configures the corresponding Master Information Block and System Information Block broadcast.

- 2. The SS configures the initial power according to T0 in Table 9.4.1.4.5-1.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure on Cell A (see 38.508, Table 4.5.2.2 till Step 18).

MAIN BODY

- 5. The power consumption tester records the changes of current.
- 6. Setup a TCP session and verify that UE uploads data correctly. Verify that UE TX power meeting the requirement in test conditions. Keep the service for 5 minutes
- 7. Get the value of power consumption tester during step 6 and calculate the average TCP throughput
- 8. Repeat Step 6 and 7 for one more time
- 9. Calculate the overall average power consumption and TCP throughput

POSTAMBLE

- 10. The SS initiates a Deregistration procedure.
- 11. The SS initiates a RRC release procedure.
- 12. Deactivate NR Cell A.

Step	Message Sequence		Verdict		
	U-S	Layer	Message	Specific Contents	
			Connect the power consumption tester to		
			the UE		
1	÷	RRC	Activate NR Cell A.		
2			SS configures the initial power according to		
			T0 in Table 9.4.1.4.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure (see		PASS
	÷	RRC	38.508, Table 4.5.2.2 till Step 18).		
5			Power consumption tester records the		
			chnages of current and voltage		
6	÷	UE	UE uploads the data correctly in NR Cell A.		PASS
			Keep services for 5 minutes		
7			Get the power concumption tester values		
			and note down the TCP throughput value		
8			Repeat step 6 and 7 for one more time		
9			Calculate the overall average power		
			consumption value and TCP Data throughput		
			value		
10	\rightarrow	NAS	SS initiates a Deregistration procedure.		PASS
	÷				
11	÷	RRC	SS initiates a RRC release procedure.		
12			Deactivate NR Cell A.		

Table 5.1.1.5-2: Message Sequence

9.4.1.4.6 Expected Result

Record the average TCP throughput and current in the following Table. The Current Should be less than [TBD]mA

Table 9.4.1.4.6-1: Average throughput and current

UL TCP Throughput(Mbps)	Average Current(mA)

9.4.2 DL Data Transmission, Power Consumption, SA

9.4.2.1 Power Consumption with DL Data Transfer, SA (64 QAM)

9.4.2.1.1 Test Purpose

Setup a Data bearer with NR cell with typical transmit level. Measure the power consumption when UE receives TCP data with downlink 64QAM

9.4.2.1.2 Reference specification

TS 38.508, TS 38.331, TS 38.300

9.4.2.1.3 Applicability

This test applies to Type 1 and Type 2 devices as described in clause 4.2.

9.4.2.1.4 Test conditions

[SS configuration] Cell A is a NR Cell. Cell A supports SA

NR Cell A

Cell Id=01 TAC = 01 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -125 dBm/30kHz RB Allocation DL = Full DL Modulation / Coding= 28 mcs-Table in PDSCH-Config = qam64 P_Max = 0 dBm DL MIMO = 4*4

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in SA mode.

[Initial conditions]

SS

NR Cell A is not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

9.4.2.1.5 Test procedure

Time	NR Cell A	Remark
то	-90	

PREAMBLE

- 1. Activate NR Cell A.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 9.4.2.1.5-1.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure on Cell A (see 38.508, Table 4.5.2.2 till Step 18).

MAIN BODY

- 5. The power consumption tester records the changes of current.
- 6. Setup a TCP session and verify that UE downloads data correctly. Keep the service for 5 minutes
- 7. Get the value of power consumption tester during step 6 and calculate the average TCP throughput
- 8. Repeat Step 6 and 7 for one more time
- 9. Calculate the overall average power consumption and TCP throughput

POSTAMBLE

- 10. The SS initiates a Deregistration procedure.
- 11. The SS initiates a RRC release procedure.
- 12. Deactivate NR Cell A.

Step		Message Sequence				
	U-S	Layer	Message	Specific Contents		
			Connect the power consumption tester to			
			the UE			
1	÷	RRC	Activate NR Cell A.			
2			SS configures the initial power according to			
			T0 in Table 9.4.2.1.5-1.			

Table 5.1.1.5-2: Message Sequence

GTI 5G Function and Performance Test Specification v4.2 – September 2021

3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure (see		PASS
	÷	RRC	38.508, Table 4.5.2.2 till Step 18).		
5			Power consumption tester records the		
			chnages of current		
6	÷	UE	UE downloads the data correctly in NR Cell A.		PASS
			Keep services for 5 minutes		
7			Get the power concumption tester values		
			and note down the TCP throughput value		
8			Repeat step 6 and 7 for one more time		
9			Calculate the overall average power		
			consumption value and TCP Data throughput		
			value		
10	\rightarrow	NAS	SS initiates a Deregistration procedure.		PASS
	←				
11	÷	RRC	SS initiates a RRC release procedure.		
12			Deactivate NR Cell A.		

9.4.2.1.6 Expected Result

Record the average TCP throughput and current in the following Table. The Current Should be less than [TBD]mA

Table 9.4.2.1.6-1: Average throughput and current

DL TCP Throughput(Mbps)	Average Current(mA)

9.4.2.2 Power Consumption with DL Data Transfer, SA (256 QAM)

9.4.2.2.1 Test Purpose

Setup a Data bearer with NR cell with typical transmit level. Measure the power consumption when UE receives TCP data with downlink 256QAM

9.4.2.2.2 Reference specification

TS 38.508, TS 38.331, TS 38.300

9.4.2.2.3 Applicability

This test applies to Type 1 and Type 2 devices as described in clause 4.2.

9.4.2.2.4 Test conditions

[SS configuration] Cell A is a NR Cell. Cell A supports SA

NR Cell A Cell Id=01 TAC = 01 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -125 dBm/30kHz RB Allocation DL = Full DL Modulation / Coding= 27 mcs-Table in PDSCH-Config = qam256 P_Max = 0 dBm DL MIMO = 4X4

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in SA mode.

[Initial conditions]

SS

NR Cell A is not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

9.4.2.2.5 Test procedure

Table 5.1.1.5-1: Time of c	ell nower leve	and paramete	r changes
	ch power ieve	i unu purumete	i chunges

Time	NR Cell A	Remark
то	-75	

PREAMBLE

- 1. Activate NR Cell A.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 9.4.2.2.5-1.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure on Cell A (see 38.508, Table 4.5.2.2 till Step 18).

MAIN BODY

- 5. The power consumption tester records the changes of current.
- 6. Setup a TCPsession and verify that UE downloads data correctly. Keep the service for 5 minutes
- 7. Get the value of power consumption tester during step 6 and calculate the average TCP throughput
- 8. Repeat Step 6 and 7 for one more time
- 9. Calculate the overall average power consumption and TCP throughput

POSTAMBLE

- 10. The SS initiates a Deregistration procedure.
- 11. The SS initiates a RRC release procedure.
- 12. Deactivate NR Cell A.

			Table 5.1.1.5-2. Message Sequence		
Step	Message Sequence				
	U-S Layer		Message	Specific Contents	
			Connect the power consumption tester to		
			the UE		
1	÷	RRC	Activate NR Cell A.		
2			SS configures the initial power according to		
			T0 in Table 9.4.2.2.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure (see		PASS
	←	RRC	38.508, Table 4.5.2.2 till Step 18).		
5			Power consumption tester records the		
			chnages of current and voltage		
6	÷	UE	UE downloads the data correctly in NR Cell A.		PASS
			Keep services for 5 minutes		
7			Get the power concumption tester values		
			and note down the TCP throughput value		
8			Repeat step 6 and 7 for one more time		
9			Calculate the overall average power		
			consumption value and TCP Data throughput		
			value		
10	\rightarrow	NAS	SS initiates a Deregistration procedure.		PASS
	÷				
11	÷	RRC	SS initiates a RRC release procedure.		
12			Deactivate NR Cell A.		

Table 5.1.1.5-2: Message Sequence

9.4.2.2.6 Expected Result

Record the average TCP throughput and current in the following Table. The Current Should be less than [TBD]mA

Table 9.4.2.2.6-1: Average throughput and current

DL TCP Throughput(Mbps)	Average Current(mA)

9.4.3 Bi-direction Data Transmission, Power Consumption, SA

9.4.3.1 Power Consumption with Bidirectional Data Transfer, SA (UL Single Tx – 64 QAM)

9.4.3.1.1 Test Purpose

Setup a Data bearer with NR cell with typical transmit level. Measure the power consumption when UE transmits and receives TCP data simultaneously with 64QAM

9.4.3.1.2 Reference specification

TS 38.508, TS 38.331, TS 38.300

9.4.3.1.3 Applicability

This test applies to Type 1 and Type 2 devices as described in clause 4.2.

9.4.3.1.4 Test conditions

[SS configuration] Cell A is a NR Cell. Cell A supports SA

```
NR Cell A
```

```
Cell Id=01 TAC = 01
MCC = 460 MNC = 00
NR-ARFCN= f1
SS/PBCH SSS EPRE = -125 dBm/30kHz
RB Allocation UL = Full
RB Allocation DL = Full
UL Modulation / Coding = 28
mcs-Table in PUSCH-Config = qam64
DL Modulation / Coding = 28
mcs-Table in PDSCH-Config = qam64
P_Max = 3 dBm
DL MIMO = 4X4
```

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in SA mode.

[Initial conditions]

SS

NR Cell A is not active The test shall be performed under ideal radio conditions.

UE

UE is powered off

9.4.3.1.5 Test procedure

Table 5.1.1.5-1: Time of cell power level and parameter changes

Time	NR Cell A	Remark
TO	-90	

PREAMBLE

- 1. Activate NR Cell A.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 9.4.3.1.5-1.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure on Cell A (see 38.508, Table 4.5.2.2 till Step 18).

MAIN BODY

- 5. The power consumption tester records the changes of current.
- Setup a TCP session and verify that UE downloads and uploads the data simultaneously. Verify that UE TX power meeting the requirement in test conditions. Keep the service for 5 minutes
- 7. Get the value of power consumption tester during step 6 and calculate the average TCP throughput
- 8. Repeat Step 6 and 7 for onemore time
- 9. Calculate the overall average power consumption and TCP throughput

POSTAMBLE

- 10. The SS initiates a Deregistration procedure.
- 11. The SS initiates a RRC release procedure.
- 12. Deactivate NR Cell A.

Step)		Message Sequence		Verdict
	U-S	Layer	Message	Specific Contents	
			Connect the power consumption tester to		
			the UE		
1	÷	RRC	Activate NR Cell A.		
2			SS configures the initial power according to		
			T0 in Table 9.4.3.1.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure (see		PASS
	←	RRC	38.508, Table 4.5.2.2 till Step 18).		
5			Power consumption tester records the		
			chnages of current		
6	←	UE	UE donwloads/uploads the data correctly in		PASS
			NR Cell A. Keep services for 5 minutes		
7			Get the power concumption tester values		
			and note down the TCP throughput value		
8			Repeat step 6 and 7 for one more time		

9			Calculate the overall average power consumption value and TCP Data throughput value	
10	\rightarrow	NAS	SS initiates a Deregistration procedure.	PASS
	←			
11	÷	RRC	SS initiates a RRC release procedure.	
12			Deactivate NR Cell A.	

9.4.3.1.6 Expected Result

Record the average TCP throughput and current in the following Table. The Current Should be less than [TBD]mA

Table 9.4.3.1.6-1: Average throughput and current

UL TCP Throughput (Mbps)	DL TCP Throughput (Mbps)	Average Current (mA)

9.4.3.2 Power Consumption with Bidirectional Data Transfer, SA (UL 2 Tx – 64 QAM)

9.4.3.2.1 Test Purpose

Setup a Data bearer with NR cell with typical transmit level.Keep the FTP services for 2 minutes. Measure the power consumption when UE transmits and receives TCP data simultaneously with 64QAM and UL 2X2 MIMO

9.4.3.2.2 Reference specification

TS 38.508, TS 38.331, TS 38.300

9.4.3.2.3 Applicability

This test applies to Type 1 and Type 2 devices as described in clause 4.2

9.4.3.2.4 Test conditions

[SS configuration] Cell A is a NR Cell. Cell A supports SA

NR Cell A Cell Id=01 TAC = 01 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -125 dBm/30kHz RB Allocation UL = Full RB Allocation DL = Full UL Modulation / Coding = 28

mcs-Table in PUSCH-Config = qam64 DL Modulation / Coding = 28 mcs-Table in PDSCH-Config = qam64 P_Max = 0 dBm UL MIMO = 2X2 DL MIMO = 4X4

[UE configuration]

The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in SA mode.

[Initial conditions]

SS

NR Cell A is not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

9.4.3.2.5 Test procedure

Table 5.1.1.5-1: Time of cell power level and parameter changes

Time	NR Cell A	Remark
то	-90	

PREAMBLE

- 1. Activate NR Cell A.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 9.4.3.2.5-1.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure on Cell A (see 38.508, Table 4.5.2.2 till Step 18).

MAIN BODY

- 5. The power consumption tester records the changes of current.
- 6. Setup a TCP session and verify that UE downloads and uploads data simultaneously. Verify that UE TX power meeting the requirement in test conditions. Keep the service for 5 minutes
- 7. Get the value of power consumption tester during step 6 and calculate the average TCP throughput
- 8. Repeat Step 6 and 7 for one more time
- 9. Calculate the overall average power consumption and TCP throughput

POSTAMBLE

- 10. The SS initiates a Deregistration procedure.
- 11. The SS initiates a RRC release procedure.
- 12. Deactivate NR Cell A.

			Table 5.1.1.5-2. Message Sequence		
Step			Message Sequence		Verdict
	U-S	Layer	Message	Specific Contents	
			Connect the power consumption tester to		
			the UE		
1	÷	RRC	Activate NR Cell A.		
2			SS configures the initial power according to		
			T0 in Table 9.4.3.2.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure (see		PASS
	←	RRC	38.508, Table 4.5.2.2 till Step 18).		
5			Power consumption tester records the		
			chnages of current		
6	÷	UE	UE downloads/uploads the data correctly in		PASS
			NR Cell A. Keep services for 5 minutes		
7			Get the power concumption tester values		
			and note down the TCP throughput value		
8			Repeat step 6 and 7 for one more time		
9			Calculate the overall average power		
			consumption value and TCP Data throughput		
			value		
10	\rightarrow	NAS	SS initiates a Deregistration procedure.		PASS
	÷				
11	÷	RRC	SS initiates a RRC release procedure.		
12			Deactivate NR Cell A.		

Table 5.1.1.5-2:	Message Sequence
------------------	------------------

9.4.3.2.6 Expected Result

Record the average TCP throughput and current in the following Table. The Current Should be less than [TBD]mA

Table 9.4.3.2.6-1: Average throughput and current

UL TCP Throughput (Mbps)	DL TCP Throughput (Mbps)	Average Current (mA)

9.4.3.3 Power Consumption with Bidirectional Data Transfer, SA (UL Single Tx – 256 QAM)

9.4.3.3.1 Test Purpose

Setup a Data bearer with NR cell with maximum transmit level at UE. Measure the power consumption when UE transmits and receives TCP data simultaneously with 256QAM

9.4.3.3.2 Reference specification

TS 38.508, TS 38.331, TS 38.300

9.4.3.3.3 Applicability

This test applies to Type 1 and Type 2 devices as described in clause 4.2.

9.4.3.3.4 Test conditions

[SS configuration] Cell A is a NR Cell. Cell A supports SA

NR Cell A

Cell Id=01 TAC = 01 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -125 dBm/30kHz RB Allocation UL = Full RB Allocation DL = Full UL Modulation / Coding = 25 mcs-Table in PUSCH-Config = qam256 DL Modulation / Coding = 27 mcs-Table in PDSCH-Config = qam256 P_Max = 16 dBm DL MIMO = 4X4

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in SA mode.

[Initial conditions]

SS

NR Cell A is not active The test shall be performed under ideal radio conditions.

UE

UE is powered off

9.4.3.3.5 Test procedure

Time	NR Cell A	Remark
то	-75	

PREAMBLE

1. Activate NR Cell A.The SS configures the corresponding Master Information Block and System

Information Block broadcast.

- 2. The SS configures the initial power according to T0 in Table 9.4.3.3.5-1.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure on Cell A (see 38.508, Table 4.5.2.2 till Step 18).

MAIN BODY

- 5. The power consumption tester records the changes of current.
- Setup a TCP session and verify that UE downloads and uploads the data simultaneously. Verify that UE TX power meeting the requirement in test conditions. Keep the service for 5 minutes
- 7. Get the value of power consumption tester during step 6 and calculate the average TCP throughput
- 8. Repeat Step 6 and 7 for one more time
- 9. Calculate the overall average power consumption and TCP throughput

POSTAMBLE

- 10. The SS initiates a Deregistration procedure.
- 11. The SS initiates a RRC release procedure.
- 12. Deactivate NR Cell A.

Step	Message Sequence		Verdict		
	U-S	Layer	Message	Specific Contents	
			Connect the power consumption tester to		
			the UE		
1	÷	RRC	Activate NR Cell A.		
2			SS configures the initial power according to		
			T0 in Table 9.4.3.3.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure (see		PASS
	÷	RRC	38.508, Table 4.5.2.2 till Step 18).		
5			Power consumption tester records the		
			chnages of current		
6	÷	UE	UE downloads/uploads the data correctly in		PASS
			NR Cell A. Keep services for 5 minutes		
7			Get the power concumption tester values		
			and note down the TCP throughput value		
8			Repeat step 6 and 7 for one more time		
9			Calculate the overall average power		
			consumption value and TCP Data throughput		
			value		
10	\rightarrow	NAS	SS initiates a Deregistration procedure.		PASS
	÷				

Table 5.1.1.5-2: Message Sequence

11	÷	RRC	SS initiates a RRC release procedure.	
12			Deactivate NR Cell A.	

9.4.3.3.6 Expected Result

Record the average TCP throughput and current in the following Table. The Current Should be less than [TBD]mA

able 9.4.3.3.6-1: Average throughput and current
--

UL TCP Throughput (Mbps)	DL TCP Throughput (Mbps)	Average Current (mA)

9.4.3.4 Power Consumption with Bidirectional Data Transfer, SA (UL 2 Tx – 256 QAM)

9.4.3.4.1 Test Purpose

Setup a Data bearer with NR cell with maximum transmit level at UE. Measure the power consumption when UE transmits and receives TCP data simultaneously with 256QAM and uplink 2X2 MIMO

9.4.3.4.2 Reference specification

TS 38.508, TS 38.331, TS 38.300

9.4.3.4.3 Applicability

This test applies to Type 1 and Type 2 devices as described in clause 4.2.

9.4.3.4.4 Test conditions

[SS configuration] Cell A is a NR Cell. Cell A supports SA

NR Cell A

Cell Id=01 TAC = 01 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -125 dBm/30kHz RB Allocation UL = Full RB Allocation DL = Full UL Modulation / Coding = 25 mcs-Table in PUSCH-Config = qam256 DL Modulation / Coding = 27 mcs-Table in PDSCH-Config = qam256 P_Max = 16 dBm DL MIMO = 4X4

UL MIMO = 2X2

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in SA mode.

[Initial conditions]

SS

NR Cell A is not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

9.4.3.4.5 Test procedure

Table 5 1 1 5 1. Time of co	المميد امتدا ممد	I noromotor changes
Table 5.1.1.5-1: Time of ce	li power ievel and	i parameter changes

Time	NR Cell A	Remark
то	-75	

PREAMBLE

- 1. Activate NR Cell A.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 9.4.3.4.5-1.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure on Cell A (see 38.508, Table 4.5.2.2 till Step 18).

MAIN BODY

- 5. The power consumption tester records the changes of current and voltage.
- 6. Setup a TCP session and verify that UE uploads data correctly. Verify that UE TX power meeting the requirement in test conditions. Keep the service for 5 minutes
- 7. Get the value of power consumption tester during step 6 and calculate the average TCP throughput
- 8. Repeat Step 6 and 7 for one more time
- 9. Calculate the overall average power consumption and TCP throughput

POSTAMBLE

- 10. The SS initiates a Deregistration procedure.
- 11. The SS initiates a RRC release procedure.
- 12. Deactivate NR Cell A.

 Table 5.1.1.5-2: Message Sequence

Step Message Sequence Verdict

GTI 5G Function and Performance Test Specification v4.2 – September 2021

	U-S	Layer	Message	Specific Contents	
			Connect the power consumption tester to the UE		
1	÷	RRC	Activate NR Cell A.		
2			SS configures the initial power according to T0 in Table 9.4.3.4.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure (see		PASS
	÷	RRC	38.508, Table 4.5.2.2 till Step 18).		
5			Power consumption tester records the chnages of current		
6	÷	UE	UE uploads the data correctly in NR Cell A. Keep services for 5 minutes		PASS
7			Get the power concumption tester values and note down the TCP throughput value		
8			Repeat step 6 and 7 for one more time		
9			Calculate the overall average power consumption value and TCP Data throughput value		
10	$\rightarrow \leftarrow$	NAS	SS initiates a Deregistration procedure.		PASS
11	÷	RRC	SS initiates a RRC release procedure.		
12			Deactivate NR Cell A.		

9.4.3.4.6 Expected Result

Record the average TCP throughput and current in the following Table. The Current Should be less than [TBD]mA

Table 9.4.3.4.6-1: Average throughput and current

UL TCP Throughput (Mbps)	DL TCP Throughput (Mbps)	Average Current (mA)

9.4.4 UL Data Transmission, Power Consumption, NSA

9.4.4.1 Power Consumption with UL Data Transfer, NSA (SCG – 64 QAM)

9.4.4.1.1 Test Purpose

Setup a SCG bearer with NR as UL data path with typical transmit level. Measure the power consumption with DRX configured on MCG cell when UE transmits TCP data with a TX power of 0 dBm

9.4.4.1.2 Reference specification

TS 36.508, TS 38.331, TS 38.300

9.4.4.1.3 Applicability

This test applies to Type 1 and Type 3 devices as described in clause 4.2.

9.4.4.1.4 Test conditions

[SS configuration] Cell A is E-UTRAN Cell, CellB is a NR Cell. Cell A supports NSA

E-UTRAN Cell A Cell Id=01 TAC = 01 MCC-MNC = 460-00 EARFCN= f1 rootSequenceIndex = 0 Reference Signal EPRE= -85 dBm/15kHz upperLayerIndication-r15=true

```
NR Cell B
Cell Id=02 TAC = 01
MCC = 460 MNC = 00
NR-ARFCN= f1
SS/PBCH SSS EPRE = -125 dBm/30kHz
RB Allocation UL = Full
UL_Modulation / Coding = 28
mcs-Table in PUSCH-Config = qam64
P_Max = 0 dBm
```

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in NSA mode.

[Initial conditions]

SS

E-UTRAN Cell A is not active NR Cell B is not active The test shall be performed under ideal radio conditions.

UE

UE is powered off

9.4.4.1.5 Test procedure

Table 5.1.1.5-1: Time of cell power level and parameter changes

|--|

	25	22	
10	-85	-90	

PREAMBLE

- 1. SS transmits RRCConnectionReconfiguration to configure specific DRX parameters on MCG E-UTRAN Cell A. Refer to Table 9.2.1.4.5-2 for E-UTRAN DRX parameters for MCG.
- 2. Activate E-UTRAN Cell A, NR Cell B.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 3. The SS configures the initial power according to T0 in Table 9.4.4.1.5-1.
- 4. The UE is powered ON.
- 5. The UE performs the registration procedure with activation of the initial default EPS bearer on Cell A (see 36.508, 4.5.2).
- 6. The SS sends an ue-CapabilityRequest including the RAT type "eutra-nr".
- 7. Verify the UE sends UECapabilityInformation message including the RAT type "eutra-nr".
- 8. The SS sends an RRCConnectionReconfiguration message containing NR RRCReconfiguration message to add Cell B as NR PS-Cell with SCG DRB.
- 9. The UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.

MAIN BODY

- 10. The power consumption tester records the changes of current.
- 11. Setup a TCP session and verify that UE uploads data correctly. Verify that data transfer happening in NR data path. Verify that UE TX power meeting the requirement in test conditions. Keep the service for 5 minutes.
- 12. Get the value of power consumption tester during step 11 and calculate the average throughput at transport layer
- 13. Repeat Step 9 to 12 for two more time
- 14. Calculate the overall average power consumption and throughput at the transport layer

POSTAMBLE

- 15. The SS initiates a Detach procedure.
- 16. The SS initiates a RRC release procedure.
- 17. Deactivate E-UTRAN Cell A and NR Cell B.

Derivation Path: TS 36.331, clause 6.3.2		
Information Element	Value/remark	Comment
drx-Config CHOICE {		
setup SEQUENCE {		
onDurationTimer	psf8	
}		
drx-InactivityTimer	psf60	
drx-RetransmissionTimer	psf4	
longDRX-CycleStartOffset CHOICE {		
sf160	0	

Table 9.2.1.4.5-2: E-UTRAN DRX Parameters for MCG

}		
shortDRX	Not present	
}		
}		

Table 5.1.1.5-3: Message Sequence

Step			Message Sequence		Verdict
otep	U-S	Layer	Message	Specific Contents	Verdiet
	0.5	Layer	Connect the power consumption tester to	Specific contents	
			the UE		
1	~	RRC	Activate E-UTRAN Cell A and NR Cell B.		
2	•		SS configures the initial power according to		
2			T0 in Table 9.4.4.1.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure with		PASS
4	÷	RRC	activation of the initial default EPS bearer on		1,435
	`	line	Cell A (see 36.508, 4.5.2).		
5	\	RRC	The SS sends an ue-CapabilityRequest		
5		line	including the RAT type "eutra-nr".		
6	\rightarrow	RRC	Verify the UE sends UECapabilityInformation		PASS
Ū			message including the RAT type "eutra-nr".		17.00
7	←	NAS	SS sends an RRCConnectionReconfiguration		
		RRC	message containing NR RRCReconfiguration		
			message to add Cell B as NR PS-Cell with SCG		
			DRB.		
8	\rightarrow	RRC	UE sends an		PASS
			RRCConnectionReconfigurationComplete		
			message containing NR		
			RRCReconfigurationComplete message.		
9	4	NAS	SS transmits RRCConnectionReconfiguration	Table 9.2.1.4.5-2 for	
		RRC	to configure specific MCG DRX parameters.	DRX parameters	
10	\rightarrow	NAS	UE transmits		PASS
		RRC	RRCConnectionReconfigurationComplete		
11			Power consumption tester records the		
			chnages of current		
12	÷	UE	UE uploads the TCP data correctly in NR data		PASS
			path. Keep services for 5 minutes		
13			Get the power concumption tester values		
			and note down the throughput put value at		
			application layer level		
14			Repeat step 9 to 13 for two times		
15			Calculate the overall average power		
			consumption value and TCP Data throughput		
16	\rightarrow	NAS	SS initiates a Detach procedure.		PASS

	÷			
17	÷	RRC	SS initiates a RRC release procedure.	
18			Deactivate E-UTRAN Cell A and NR Cell B.	

9.4.4.1.6 Expected Result

Record the average TCP throughput and current in the Table 错误!未找到引用源。-1. The Current Should be less than [TBD]mA

Table The state of					
UL TCP Throughput (Mbps)	Average Current (mA)				
[TBD]	[TBD]				

Table 错误!未找到引用源。-1: Average throughput and current

9.4.4.2 Power Consumption with UL Data Transfer, NSA (MCG & SCG – 64 QAM)

9.4.4.2.1 Test Purpose

Setup a MCG & SCG data bearer with with typical transmit level in a NSA cell. Measure the power consumption when UE transmits TCP data with total TX power of 0 dBm for both LTE and NR cell

9.4.4.2.2 Reference specification

TS 36.508, TS 38.331, TS 38.300

9.4.4.2.3 Applicability

This test applies to Type 1 and Type 3 devices as described in clause 4.2.

9.4.4.2.4 Test conditions

[SS configuration] Cell A is E-UTRAN Cell, CellB is a NR Cell. Cell A supports NSA

E-UTRAN Cell A Cell Id=01 TAC = 01 MCC-MNC = 460-00 EARFCN= f1 rootSequenceIndex = 0 Reference Signal EPRE= -85 dBm/15kHz RB Allocation UL = Full UL Modulation / Coding = 27 UL 64QAM=TRUE P_Max = 0 dBm upperLayerIndication-r15=true

NR Cell B

Cell Id=02 TAC = 01 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -125 dBm/30kHz RB Allocation UL = Full UL Modulation / Coding = 28 mcs-Table in PUSCH-Config = qam64 P_Max = 0 dBm

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in NSA mode.

[Initial conditions]

SS

E-UTRAN Cell A is not active NR Cell B is not active The test shall be performed under ideal radio conditions.

UE

UE is powered off

9.4.4.2.5 Test procedure

Table 5.1.1.5-1: Time of cell	nowor loval and	I noromotor changes
Iddle 3.1.1.3-1. IIIIIe of Cell	DOWEL LEVEL ALL	

Time	E-UTRAN Cell A	NR Cell C	Remark
то	-85	-90	

PREAMBLE

- 1. Activate E-UTRAN Cell A, NR Cell B.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 9.4.4.2.5-1.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure with activation of the initial default EPS bearer on Cell A (see 36.508, 4.5.2).
- 5. The SS sends an ue-CapabilityRequest including the RAT type "eutra-nr".
- 6. Verify the UE sends UECapabilityInformation message including the RAT type "eutra-nr".
- 7. The SS sends an RRCConnectionReconfiguration message containing NR RRCReconfiguration message to add Cell B as NR PS-Cell with SCG DRB in addition with MCG bearer.
- 8. The UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.

MAIN BODY

- 9. The power consumption tester records the changes of current.
- 10. Setup a FTP session and verify that UE uploads data correctly. Verify that data transfer

happening in both MCG and SCG bearers. Verify that UE TX power meeting the requirement in test conditions. Keep the service for 5 minutes

- 11. Get the value of power consumption tester during step 10 and calculate the average throughput at transport layer
- 12. Repeat Step 9 to 11 for two more time
- 13. Calculate the overall average power consumption and throughput at the transport layer

POSTAMBLE

- 14. The SS initiates a Detach procedure.
- 15. The SS initiates a RRC release procedure.
- 16. Deactivate E-UTRAN Cell A and NR Cell B.

Step	Message Sequence			Verdict	
	U-S	Layer	Message	Specific Contents	
			Connect the power consumption tester to		
			the UE		
1	÷	RRC	Activate E-UTRAN Cell A and NR Cell B.		
2			SS configures the initial power according to		
			T0 in Table 9.4.4.2.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure with		PASS
	÷	RRC	activation of the initial default EPS bearer on		
			Cell A (see 36.508, 4.5.2).		
5	÷	RRC	The SS sends an ue-CapabilityRequest		
			including the RAT type "eutra-nr".		
6	\rightarrow	RRC	Verify the UE sends UECapabilityInformation		PASS
			message including the RAT type "eutra-nr".		
7	÷	NAS	SS sends an RRCConnectionReconfiguration		
		RRC	message containing NR RRCReconfiguration		
			message to add Cell B as NR PS-Cell with SCG		
			DRB in addition with existing MCG DRB		
8	\rightarrow	RRC	UE sends an		PASS
			RRCConnectionReconfigurationComplete		
			message containing NR		
			RRCReconfigurationComplete message.		
9			Power consumption tester records the		
			changes of current		
10	÷	UE	UE uploads the data correctly in both MCG		PASS
			and SCG data path. Keep services for 5		
			minutes		
11			Get the power concumption tester values		
			and note down the throughput put value at		

Table 5.1.1.5-2: Message Sequence

			transport layer level		
12			Repeat step 9 to 11 for two times		
13			Calculate the overall average power consumption value and TCP Data throughput value		
14	$\rightarrow \leftarrow$	NAS	SS initiates a Detach procedure.		PASS
15	÷	RRC	SS initiates a RRC release procedure.		
16			Deactivate E-UTRAN Cell A and NR Cell B.		

9.4.4.2.6 Expected Result

Record the average TCP throughput and current in the Table 错误!未找到引用源。-1.The Current Should be less than [TBD]mA

Table 错误!未找到引用源。-1: Average throughput and current

Throughput (Mbps)			Average	
UL TCP Throughput	UL TCP Throughput UL MAC Throughput in MCG UL MAC Throughput in SCG			
[TBD]	[TBD]	[TBD]	[TBD]	

9.4.4.3 Power Consumption with UL Data Transfer, NSA (SCG - 256 QAM)

9.4.4.3.1 Test Purpose

Setup a SCG bearer with NR as UL data path with maximum transmit level. Measure the power consumption with DRX configured on MCG cell when UE transmits TCP data with a power of 23 dBm

9.4.4.3.2 Reference specification

TS 36.508, TS 38.331, TS 38.300

9.4.4.3.3 Applicability

This test applies to Type 1 and Type 3 devices as described in clause 4.2.

9.4.4.3.4 Test conditions

[SS configuration] Cell A is E-UTRAN Cell, CellB is a NR Cell. Cell A supports NSA

E-UTRAN Cell A Cell Id=01 TAC = 01 MCC-MNC = 460-00 EARFCN= f1 rootSequenceIndex = 0

Reference Signal EPRE= -85 dBm/15kHz upperLayerIndication-r15=true

```
NR Cell B
Cell Id=02 TAC = 01
MCC = 460 MNC = 00
NR-ARFCN= f1
SS/PBCH SSS EPRE = -125 dBm/30kHz
RB Allocation UL = Full
UL Modulation / Coding= 25
mcs-Table in PUSCH-Config = qam256
P_Max = 23 dBm
```

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in NSA mode.

[Initial conditions]

SS

E-UTRAN Cell A is not active

NR Cell B is not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

9.4.4.3.5 Test procedure

Table 5.1.1.5-1: Time of cell power level and parameter changes

Time	E-UTRAN Cell A	NR Cell C	Remark
то	-85	-90	

PREAMBLE

- 1. Activate E-UTRAN Cell A, NR Cell B.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 9.4.4.3.5-1.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure with activation of the initial default EPS bearer on Cell A (see 36.508, 4.5.2).
- 5. The SS sends an ue-CapabilityRequest including the RAT type "eutra-nr".
- 6. Verify the UE sends UECapabilityInformation message including the RAT type "eutra-nr".
- 7. The SS sends an RRCConnectionReconfiguration message containing NR RRCReconfiguration message to add Cell B as NR PS-Cell with SCG DRB.
- 8. The UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.

MAIN BODY

- 9. SS transmits RRCConnectionReconfiguration to configure specific DRX parameters on MCG E-UTRAN Cell A. Refer to Table 9.2.1.4.5-2 for E-UTRAN DRX parameters for MCG.
- 10. The power consumption tester records the changes of current.
- 11. Setup a TCP session and verify that UE uploads data correctly. Verify that data transfer happening in NR data path. Verify that UE TX power meeting the requirement in test conditions. Keep the service for 5 minutes
- 12. Get the value of power consumption tester during step 11 and calculate the average throughput at application layer
- 13. Repeat Step 9 to 12 for two more time
- 14. Calculate the overall average power consumption and throughput at the transport layer

POSTAMBLE

- 15. The SS initiates a Detach procedure.
- 16. The SS initiates a RRC release procedure.
- 17. Deactivate E-UTRAN Cell A and NR Cell B.

Derivation Path: TS 36.331, clause 6.3.2		
Information Element	Value/remark	Comment
drx-Config CHOICE {		
setup SEQUENCE {		
onDurationTimer	psf8	
}		
drx-InactivityTimer	psf60	
drx-RetransmissionTimer	psf4	
longDRX-CycleStartOffset CHOICE {		
sf160	0	
}		
shortDRX	Not present	
}		
}		

Table 9.2.1.4.5-2: E-UTRAN DRX Parameters for MCG

Step		Message Sequence			Verdict
	U-S	U-S Layer Message		Specific Contents	
			Connect the power consumption tester to		
			the UE		
1	÷	RRC	Activate E-UTRAN Cell A and NR Cell B.		
2			SS configures the initial power according to		
			T0 in Table 9.4.4.3.5-1.		
3		UE	Switch On UE	AT Command	

9.4.4.3.6 Expected Result

Record the average TCP throughput and current in the Table 错误!未找到引用源。-1. The Current Should be less than [TBD]mA

 UL TCP Throughput (Mbps)
 Average Current (mA)

 [TBD]
 [TBD]

Table 错误!未找到引用源。-1: Average throughput and current

9.4.4.4 Power Consumption with UL Data Transfer, NSA (MCG & SCG – 256 QAM)

9.4.4.4.1 Test Purpose

Setup a MCG & SCG data bearer with with typical transmit level in a NSA cell. Measure the power consumption when UE transmits TCP data with a power of 23 dBm for both LTE and NR cell

9.4.4.4.2 Reference specification

TS 36.508, TS 38.331, TS 38.300

9.4.4.4.3 Applicability

This test applies to the device that supports NSA or SA+NSA.

9.4.4.4 Test conditions

[SS configuration] Cell A is E-UTRAN Cell, CellB is a NR Cell. Cell A supports NSA

E-UTRAN Cell A Cell Id=01 TAC = 01 MCC-MNC = 460-00 EARFCN= f1 rootSequenceIndex = 0 Reference Signal EPRE= -85 dBm/15kHz RB Allocation UL = Full UL Modulation / Coding = 27 P_Max = 10 dBm UL 64QAM = TRUE upperLayerIndication-r15=true

```
NR Cell B
Cell Id=02 TAC = 01
MCC = 460 MNC = 00
NR-ARFCN= f1
SS/PBCH SSS EPRE = -125 dBm/30kHz
RB Allocation UL = Full
UL Modulation / Coding = 25
mcs-Table in PUSCH-Config = qam256
P_Max = 23 dBm
```

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in NSA mode.

[Initial conditions]

SS

E-UTRAN Cell A is not active

NR Cell B is not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

9.4.4.4.5 Test procedure

Time	E-UTRAN Cell A	NR Cell C	Remark
то	-85	-90	

PREAMBLE

- 1. Activate E-UTRAN Cell A, NR Cell B.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 9.4.4.4.5-1.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure with activation of the initial default EPS bearer on Cell A (see 36.508, 4.5.2).
- 5. The SS sends an ue-CapabilityRequest including the RAT type "eutra-nr".
- 6. Verify the UE sends UECapabilityInformation message including the RAT type "eutra-nr".
- 7. The SS sends an RRCConnectionReconfiguration message containing NR RRCReconfiguration message to add Cell B as NR PS-Cell with SCG DRB in addition with MCG bearer.
- 8. The UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.

MAIN BODY

- 9. The power consumption tester records the changes of current.
- 10. Setup a TCP session and verify that UE uploads data correctly. Verify that data transfer happening in both MCG and SCG bearers. Verify that UE TX power meeting the requirement in test conditions. Keep the service for 5 minutes
- 11. Get the value of power consumption tester during step 10 and calculate the average throughput at transport layer
- 12. Repeat Step 9 to 11 for two more time
- 13. Calculate the overall average power consumption and throughput at the transport level

POSTAMBLE

- 14. The SS initiates a Detach procedure.
- 15. The SS initiates a RRC release procedure.
- 16. Deactivate E-UTRAN Cell A and NR Cell B.

Step			Message Sequence		Verdict
	U-S	Layer	Message	Specific Contents	
			Connect the power consumption tester to		
			the UE		
1	÷	RRC	Activate E-UTRAN Cell A and NR Cell B.		
2			SS configures the initial power according to		
			T0 in Table 9.4.4.4.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure with		PASS
	÷	RRC	activation of the initial default EPS bearer on		
			Cell A (see 36.508, 4.5.2).		
5	←	RRC	The SS sends an ue-CapabilityRequest		
			including the RAT type "eutra-nr".		
6	\rightarrow	RRC	Verify the UE sends UECapabilityInformation		PASS
			message including the RAT type "eutra-nr".		
7	←	NAS	SS sends an RRCConnectionReconfiguration		
		RRC	message containing NR RRCReconfiguration		
			message to add Cell B as NR PS-Cell with SCG		
			DRB in addition with existing MCG DRB		
8	\rightarrow	RRC	UE sends an		PASS
			RRCConnectionReconfigurationComplete		
			message containing NR		
			RRCReconfigurationComplete message.		
9			Power consumption tester records the		
			changes of current		
10	←	UE	UE uploads the data correctly in both MCG		PASS
			and SCG data path. Keep services for 5		
			minutes		
11			Get the power concumption tester values		
			and note down the throughput put value at		
			transpoprt layer level		
12			Repeat step 9 to 11 for two times		
13			Calculate the overall average power		
			consumption value and transpport Data		
			throughput value		
14	\rightarrow	NAS	SS initiates a Detach procedure.		PASS
	÷				
15	←	RRC	SS initiates a RRC release procedure.		
16			Deactivate E-UTRAN Cell A and NR Cell B.		

Table 5.1.1.5-2: Message Sequence

9.4.4.4.6 Expected Result

Record the average TCP throughput and current in the Table 错误!未找到引用源。-1. The Current

Should be less than [TBD]mA

Table 错误!未找到引用源。-1: Average throughput and current

	Average		
UL TCP Throughput	UL MAC Throughput in MCG	UL MAC Throughput in SCG	Current(mA)

9.4.5 DL Data Transmission, Power Consumption, NSA

9.4.5.1 Power Consumption with DL Data Transfer, NSA (SCG - 64 QAM)

9.4.5.1.1 Test Purpose

Setup a SCG bearer with NR as DL data path with typical transmit level. Measure the power consumption with DRX configured on MCG cell when UE receives TCP data

9.4.5.1.2 Reference specification

TS 36.508, TS 38.331, TS 38.300

9.4.5.1.3 Applicability

This test applies to Type 1 and Type 3 devices as described in clause 4.2.

9.4.5.1.4 Test conditions

[SS configuration] Cell A is E-UTRAN Cell, CellB is a NR Cell. Cell A supports NSA

E-UTRAN Cell A Cell Id=01 TAC = 01 MCC-MNC = 460-00 EARFCN= f1 rootSequenceIndex = 0 Reference Signal EPRE= -85 dBm/15kHz upperLayerIndication-r15=true

NR Cell B Cell Id=02 TAC = 01 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -125 dBm/30kHz RB Allocation DL = Full DL Modulation / Coding= 28 mcs-Table in PDSCH-Config = qam64 P_Max = 0 dBm

DL MIMO = 4X4

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in NSA mode.

[Initial conditions]

SS

E-UTRAN Cell A is not active

NR Cell B is not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

9.4.5.1.5 Test procedure

Table 5.1.1.5-1: Time of cell power level and parameter changes

Time	E-UTRAN Cell A	NR Cell C	Remark
то	-85	-75	

PREAMBLE

- 1. Activate E-UTRAN Cell A, NR Cell B.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 9.4.5.1.5-1.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure with activation of the initial default EPS bearer on Cell A (see 36.508, 4.5.2).
- 5. The SS sends an ue-CapabilityRequest including the RAT type "eutra-nr".
- 6. Verify the UE sends UECapabilityInformation message including the RAT type "eutra-nr".
- 7. The SS sends an RRCConnectionReconfiguration message containing NR RRCReconfiguration message to add Cell B as NR PS-Cell with SCG DRB.
- 8. The UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.

MAIN BODY

- 9. SS transmits RRCConnectionReconfiguration to configure specific DRX parameters on MCG E-UTRAN Cell A. Refer to Table 9.2.1.4.5-2 for E-UTRAN DRX parameters for MCG.
- 10. The power consumption tester records the changes of current.
- 11. Setup a TCP session and verify that UE downloads data correctly. Verify that data transfer happening in NR data path. Keep the service for 5 minutes
- 12. Get the value of power consumption tester during step 11 and calculate the average throughput at transport layer
- 13. Repeat Step 9 to 12 for two more time
- 14. Calculate the overall average power consumption and throughput at the transport layer

POSTAMBLE

- 15. The SS initiates a Detach procedure.
- 16. The SS initiates a RRC release procedure.
- 17. Deactivate E-UTRAN Cell A and NR Cell B.

Table 9.2.1.4.5-2: E-UTRAN DRX Parameters for MCG

Derivation Path: TS 36.331, clause 6.3.2				
Information Element	Value/remark	Comment		
drx-Config CHOICE {				
setup SEQUENCE {				
onDurationTimer	psf8			
}				
drx-InactivityTimer	psf60			
drx-RetransmissionTimer	psf4			
longDRX-CycleStartOffset CHOICE {				
sf160	0			
}				
shortDRX	Not present			
}				
}				

Table 5.1.1.5-3: Message Sequence

Step			Message Sequence		Verdict
	U-S	Layer	Message	Specific Contents	
			Connect the power consumption tester to		
			the UE		
1	÷	RRC	Activate E-UTRAN Cell A and NR Cell B.		
2			SS configures the initial power according to		
			T0 in Table 9.4.5.1.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure with		PASS
	÷	RRC	activation of the initial default EPS bearer on		
			Cell A (see 36.508, 4.5.2).		
5	÷	RRC	The SS sends an ue-CapabilityRequest		
			including the RAT type "eutra-nr".		
6	\rightarrow	RRC	Verify the UE sends UECapabilityInformation		PASS
			message including the RAT type "eutra-nr".		
7	÷	NAS	SS sends an RRCConnectionReconfiguration		
		RRC	message containing NR RRCReconfiguration		
			message to add Cell B as NR PS-Cell with SCG		
			DRB.		
8	\rightarrow	RRC	UE sends an		PASS

GTI 5G Function and Performance Test Specification v4.2 – September 2021

				1
		RRCConnectionReconfigurationComplete		
		message containing NR		
		RRCReconfigurationComplete message.		
←	NAS	SS transmits RRCConnectionReconfiguration	Table 9.2.1.4.5-2 for	
	RRC	to configure specific MCG DRX parameters.	DRX parameters	
\rightarrow	NAS	UE transmits		PASS
	RRC	RRCConnectionReconfigurationComplete		
		Power consumption tester records the		
		chnages of current		
÷	UE	UE downloads the data correctly in NR data		PASS
		path. Keep services for 5 minutes		
		Get the power concumption tester values		
		and note down the throughput put value at		
		transpport layer level		
		Repeat step 9 to 13 for two times		
		Calculate the overall average power		
		consumption value and TCP Data throughput		
\rightarrow	NAS	SS initiates a Detach procedure.		PASS
÷				
÷	RRC	SS initiates a RRC release procedure.		
		Deactivate E-UTRAN Cell A and NR Cell B.		
	→ ←	→ NAS → NAS RRC ← UE → NAS ← NAS ← NAS	messagecontainingNRRRCReconfigurationComplete message.←NASSS transmits RRCConnectionReconfiguration RRCRRCto configure specific MCG DRX parameters.→NASUERRCRRCConnectionReconfigurationCompletePower consumption tester records the chnages of current←UEUEUE downloads the data correctly in NR data path. Keep services for 5 minutesGet the power concumption tester values and note down the throughput put value at transport layer levelImage: Appeared step 9 to 13 for two times→NASSS initiates a Detach procedure.←RRCSS initiates a RRC release procedure.	messagecontainingNRRRCReconfigurationComplete message.RRCReconfigurationComplete message.✓NASSS transmits RRCConnectionReconfiguration RRCTable 9.2.1.4.5-2 for DRX parameters.→NASUEtransmits RRCRRCRRCConnectionReconfigurationCompleteDRX parameters→NASUEtransmits RRCRRCRRCConnectionReconfigurationCompletePower consumption tester records the chnages of current✓UEUE downloads the data correctly in NR data path. Keep services for 5 minutesGet the power concumption tester values and note down the throughput put value at transpport layer levelARepeat step 9 to 13 for two timesCalculate the overall average power consumption value and TCP Data throughput→NASSS initiates a Detach procedure.✓RRCSS initiates a RRC release procedure.

9.4.5.1.6 Expected Result

Record the average TCP throughput and current in the Table 错误!未找到引用源。-1. The Current Should be less than [TBD]mA

DL TCP Throughput (Mbps)	Average Current (mA)				
[TBD]	[TBD]				

Table 错误!未找到引用源。-1: Average throughput and current

9.4.5.2 Power Consumption with DL Data Transfer, NSA (MCG & SCG – 64 QAM)

9.4.5.2.1 Test Purpose

Setup a MCG & SCG data bearer with with typical transmit level in a NSA cell. Measure the power consumption when UE receives TCP data

9.4.5.2.2 Reference specification

TS 36.508, TS 38.331, TS 38.300

9.4.5.2.3 Applicability

This test applies to Type 1 and Type 3 devices as described in clause 4.2.

9.4.5.2.4 Test conditions

[SS configuration] Cell A is E-UTRAN Cell, CellB is a NR Cell. Cell A supports NSA

E-UTRAN Cell A

GTI

Cell Id=01 TAC = 01 MCC-MNC = 460-00 EARFCN= f1 rootSequenceIndex = 0 Reference Signal EPRE= -85 dBm/15kHz RB Allocation DL = Full DL Modulation / Coding = 27 DL 256 QAM = FALSE P_Max = 0 dBm upperLayerIndication-r15=true DL MIMO = 2X2

NR Cell B

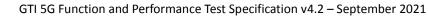
```
Cell Id=02 TAC = 01
MCC = 460 MNC = 00
NR-ARFCN= f1
SS/PBCH SSS EPRE = -125 dBm/30kHz
RB Allocation DL = Full
DL Modulation / Coding = 28
mcs-Table in PDSCH-Config = qam64
P_Max = 0 dBm
DL MIMO = 4X4
```

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in NSA mode.

[Initial conditions]

SS

E-UTRAN Cell A is not active NR Cell B is not active The test shall be performed under ideal radio conditions.


UE

UE is powered off

9.4.5.2.5 Test procedure

Table 9.4.5.2.55.1.1.5-1: Time of cell power level and parameter changes

Time E-UTRAN Cell A NR Cell C Remark

то	-85	-90	

PREAMBLE

- 1. Activate E-UTRAN Cell A, NR Cell B.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 9.4.5.2.5-1.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure with activation of the initial default EPS bearer on Cell A (see 36.508, 4.5.2).
- 5. The SS sends an ue-CapabilityRequest including the RAT type "eutra-nr".
- 6. Verify the UE sends UECapabilityInformation message including the RAT type "eutra-nr".
- 7. The SS sends an RRCConnectionReconfiguration message containing NR RRCReconfiguration message to add Cell B as NR PS-Cell with SCG DRB in addition with MCG bearer.
- 8. The UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.

MAIN BODY

- 9. The power consumption tester records the changes of current.
- 10. Setup a TCP session and verify that UE downloads data correctly. Verify that data transfer happening in both MCG and SCG bearers. Keep the service for 5 minutes
- 11. Get the value of power consumption tester during step 10 and calculate the average throughput at transport layer
- 12. Repeat Step 9 to 11 for two more time
- 13. Calculate the overall average power consumption and throughput at the transport layer

POSTAMBLE

- 14. The SS initiates a Detach procedure.
- 15. The SS initiates a RRC release procedure.
- 16. Deactivate E-UTRAN Cell A and NR Cell B.

Step	Message Sequence				Verdict
	U-S Layer Message		Specific Contents		
			Connect the power consumption tester to		
			the UE		
1	÷	RRC	Activate E-UTRAN Cell A and NR Cell B.		
2			SS configures the initial power according to		
			T0 in Table 9.4.5.2.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure with		PASS
	←	RRC	activation of the initial default EPS bearer on		
			Cell A (see 36.508, 4.5.2).		
5	←	RRC	The SS sends an ue-CapabilityRequest		
			including the RAT type "eutra-nr".		

 Table 5.1.1.5-2: Message Sequence

GTI 5G Function and Performance Test Specification v4.2 – September 2021

6	\rightarrow	RRC	Verify the UE sends UECapabilityInformation	PASS
			message including the RAT type "eutra-nr".	
7	÷	NAS	SS sends an RRCConnectionReconfiguration	
		RRC	message containing NR RRCReconfiguration	
			message to add Cell B as NR PS-Cell with SCG	
			DRB in addition with existing MCG DRB	
8	\rightarrow	RRC	UE sends an	PASS
			RRCConnectionReconfigurationComplete	
			message containing NR	
			RRCReconfigurationComplete message.	
9			Power consumption tester records the	
			changes of current	
10	÷	UE	UE downloads the data correctly in both	PASS
			MCG and SCG data path. Keep services for 5	
			minutes	
11			Get the power concumption tester values	
			and note down the throughput put value at	
			transport layer level	
12			Repeat step 9 to 11 for two times	
13			Calculate the overall average power	
			consumption value and TCP Data throughput	
14	\rightarrow	NAS	SS initiates a Detach procedure.	PASS
	÷			
15	÷	RRC	SS initiates a RRC release procedure.	
16			Deactivate E-UTRAN Cell A and NR Cell B.	

9.4.5.2.6 Expected Result

Record the average TCP throughput and current in the Table 错误!未找到引用源。-1. The Current Should be less than [TBD]mA

Table 错误!未找到引用源。-1: Average throughput and current

	Average		
DL TCP Throughput	DL MAC Throughput in MCG	DL MAC Throughput in SCG	Current(mA)
[TBD]	[TBD]	[TBD]	[TBD]

9.4.5.3 Power Consumption with DL Data Transfer, NSA (SCG – 256 QAM)

9.4.5.3.1 Test Purpose

Setup a SCG bearer with NR as DL data path. Measure the power consumption with DRX configured on MCG cell when UE receives TCP data

9.4.5.3.2 Reference specification

TS 36.508, TS 38.331, TS 38.300

9.4.5.3.3 Applicability

This test applies to Type 1 and Type 3 devices as described in clause 4.2.

9.4.5.3.4 Test conditions

[SS configuration] Cell A is E-UTRAN Cell, CellB is a NR Cell. Cell A supports NSA

E-UTRAN Cell A Cell Id=01 TAC = 01 MCC-MNC = 460-00 EARFCN= f1 rootSequenceIndex = 0 Reference Signal EPRE= -85 dBm/15kHz upperLayerIndication-r15=true

NR Cell B Cell Id=02 TAC = 01 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -125 dBm/30kHz RB Allocation DL = Full DL Modulation / Coding = 27 mcs-Table in PDSCH-Config = qam256 P_Max = 0 dBm DL MIMO = 4X4

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in NSA mode.

[Initial conditions]

SS

E-UTRAN Cell A is not active NR Cell B is not active The test shall be performed under ideal radio conditions.

UE

UE is powered off

9.4.5.3.5 Test procedure

Table 5.1.1.5-1: Time of cell power level and parameter changes

Time	E-UTRAN Cell A	NR Cell C	Remark
TO	-85	-75	

PREAMBLE

- 1. Activate E-UTRAN Cell A, NR Cell B.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 9.4.5.3.5-1.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure with activation of the initial default EPS bearer on Cell A (see 36.508, 4.5.2).
- 5. The SS sends an ue-CapabilityRequest including the RAT type "eutra-nr".
- 6. Verify the UE sends UECapabilityInformation message including the RAT type "eutra-nr".
- 7. The SS sends an RRCConnectionReconfiguration message containing NR RRCReconfiguration message to add Cell B as NR PS-Cell with SCG DRB.
- 8. The UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.

MAIN BODY

- 9. SS transmits RRCConnectionReconfiguration to configure specific DRX parameters on MCG E-UTRAN Cell A. Refer to Table 9.2.1.4.5-2 for E-UTRAN DRX parameters for MCG.
- 10. The power consumption tester records the changes of current.
- 11. Setup a TCP session and verify that UE downloads data correctly. Verify that data transfer happening in NR data path. Keep the service for 5 minutes
- 12. Get the value of power consumption tester during step 11 and calculate the average throughput at transport layer
- 13. Repeat Step 9 to 11 for two more time
- 14. Calculate the overall average power consumption and throughput at the transport layer

POSTAMBLE

- 15. The SS initiates a Detach procedure.
- 16. The SS initiates a RRC release procedure.
- 17. Deactivate E-UTRAN Cell A and NR Cell B.

Derivation Path: TS 36.331, clause 6.3.2		
Information Element	Value/remark	Comment
drx-Config CHOICE {		
setup SEQUENCE {		
onDurationTimer	psf8	
}		
drx-InactivityTimer	psf60	
drx-RetransmissionTimer	psf4	
longDRX-CycleStartOffset CHOICE {		
sf160	0	

Table 9.2.1.4.5-2: E-UTRAN DRX Parameters for MCG

}		
shortDRX	Not present	
}		
}		

Table 5.1.1.5-3: Message Sequence

			· · _ ·		
Step		1	Message Sequence		Verdict
	U-S	Layer	Message	Specific Contents	
			Connect the power consumption tester to		
			the UE		
1	←	RRC	Activate E-UTRAN Cell A and NR Cell B.		
2			SS configures the initial power according to		
			T0 in Table 9.4.5.3.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure with		PASS
	÷	RRC	activation of the initial default EPS bearer on		
			Cell A (see 36.508, 4.5.2).		
5	÷	RRC	The SS sends an ue-CapabilityRequest		
			including the RAT type "eutra-nr".		
6	\rightarrow	RRC	Verify the UE sends UECapabilityInformation		PASS
			message including the RAT type "eutra-nr".		
7	←	NAS	SS sends an RRCConnectionReconfiguration		
		RRC	message containing NR RRCReconfiguration		
			message to add Cell B as NR PS-Cell with SCG		
			DRB.		
8	\rightarrow	RRC	UE sends an		PASS
			RRCConnectionReconfigurationComplete		
			message containing NR		
			RRCReconfigurationComplete message.		
9	←	NAS	SS transmits RRCConnectionReconfiguration	Table 9.2.1.4.5-2 for	
		RRC	to configure specific MCG DRX parameters.	DRX parameters	
10	\rightarrow	NAS	UE transmits		PASS
		RRC	RRCConnectionReconfigurationComplete		
11			Power consumption tester records the		
			chnages of		
12	÷	UE	UE downloads the data correctly in NR data		PASS
			path. Keep services for 5 minutes		
13			Get the power concumption tester values		
			and note down the throughput put value at		
			transport layer level		
14			Repeat step 9 to 13 for two times		
15			Calculate the overall average power		
			consumption value and TCP Data throughput		

16	\rightarrow	NAS	SS initiates a Detach procedure.	PASS
	÷			
17	÷	RRC	SS initiates a RRC release procedure.	
18			Deactivate E-UTRAN Cell A and NR Cell B.	

9.4.5.3.6 Expected Result

Record the average TCP throughput and current in the Table 错误!未找到引用源。-1. The Current Should be less than [TBD]mA

Table 错误!未找到引用源。-1: Average throughput and current

DL TCP Throughput (Mbps)	Average Current (mA)

9.4.5.4 Power Consumption with DL Data Transfer, NSA (MCG & SCG – 256 QAM)

9.4.5.4.1 Test Purpose

Setup a MCG & SCG data bearer with with typical transmit level in a NSA cell. Measure the power consumption when UE receives TCP data

9.4.5.4.2 Reference specification

TS 36.508, TS 38.331, TS 38.300

9.4.5.4.3 Applicability

This test applies to Type 1 and Type 3 devices as described in clause 4.2.

9.4.5.4.4 Test conditions

[SS configuration] Cell A is E-UTRAN Cell, CellB is a NR Cell. Cell A supports NSA

E-UTRAN Cell A Cell Id=01 TAC = 01 MCC-MNC = 460-00 EARFCN= f1 rootSequenceIndex = 0 Reference Signal EPRE= -85 dBm/15kHz RB Allocation DL = Full DL Modulation / Coding = 27 P_Max = 0 dBm DL 256 QAM = TRUE upperLayerIndication-r15=true DL MIMO = 2X2

NR Cell B Cell Id=02 TAC = 01 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -125 dBm/30kHz RB Allocation DL = Full DL Modulation / Coding = 27 mcs-Table in PDSCH-Config = qam256 P_Max = 0 dBm DL MIMO = 4X4

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in NSA mode.

[Initial conditions]

SS

E-UTRAN Cell A is not active

NR Cell B is not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

9.4.5.4.5 Test procedure

Table 9.4.5.4.5-1: Time of cell power level and parameter changes

Time	E-UTRAN Cell A	NR Cell C	Remark
Т0	-85	-75	

PREAMBLE

- 1. Activate E-UTRAN Cell A, NR Cell B.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 9.4.5.4.5-1.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure with activation of the initial default EPS bearer on Cell A (see 36.508, 4.5.2).
- 5. The SS sends an ue-CapabilityRequest including the RAT type "eutra-nr".
- 6. Verify the UE sends UECapabilityInformation message including the RAT type "eutra-nr".
- 7. The SS sends an RRCConnectionReconfiguration message containing NR RRCReconfiguration message to add Cell B as NR PS-Cell with SCG DRB in addition with MCG bearer.
- 8. The UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.

MAIN BODY

- 9. The power consumption tester records the changes of current.
- 10. Setup a TCP session and verify that UE uploads data correctly. Verify that data transfer happening in both MCG and SCG bearers. Keep the service for 5 minutes
- 11. Get the value of power consumption tester during step 10 and calculate the average throughput at transport layer
- 12. Repeat Step 9 to 11 for two more time
- 13. Calculate the overall average power consumption and throughput at the transport layer

POSTAMBLE

- 14. The SS initiates a Detach procedure.
- 15. The SS initiates a RRC release procedure.
- 16. Deactivate E-UTRAN Cell A and NR Cell B.

			Table 5.1.1.5-2. Message Sequence		
Step			Message Sequence		Verdict
	U-S	Layer	Message	Specific Contents	
			Connect the power consumption tester to		
			the UE		
1	÷	RRC	Activate E-UTRAN Cell A and NR Cell B.		
2			SS configures the initial power according to		
			T0 in Table 9.4.5.4.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure with		PASS
	←	RRC	activation of the initial default EPS bearer on		
			Cell A (see 36.508, 4.5.2).		
5	÷	RRC	The SS sends an ue-CapabilityRequest		
			including the RAT type "eutra-nr".		
6	\rightarrow	RRC	Verify the UE sends UECapabilityInformation		PASS
			message including the RAT type "eutra-nr".		
7	←	NAS	SS sends an RRCConnectionReconfiguration		
		RRC	message containing NR RRCReconfiguration		
			message to add Cell B as NR PS-Cell with SCG		
			DRB in addition with existing MCG DRB		
8	\rightarrow	RRC	UE sends an		PASS
			RRCConnectionReconfigurationComplete		
			message containing NR		
			RRCReconfigurationComplete message.		
9			Power consumption tester records the		
			changes of current		
10	÷	UE	UE downloads the data correctly in both		PASS
			MCG and SCG data path. Keep services for 5		
			minutes		

Table 5.1.1.5-2: Message Sequence

11			Get the power concumption tester values	
			and note down the throughput put value at	
			transport layer level	
12			Repeat step 9 to 11 for two times	
13			Calculate the overall average power	
			consumption value and TCP Data throughput	
14	\rightarrow	NAS	SS initiates a Detach procedure.	PASS
	←			
15	←	RRC	SS initiates a RRC release procedure.	
16			Deactivate E-UTRAN Cell A and NR Cell B.	

9.4.5.4.6 Expected Result

Record the average TCP throughput and current in the Table 错误!未找到引用源。-1. Current Should be less than [TBD]mA

Table 错误!未找到引用源。	-1: Average throughput and current	

	Average			
DL TCP Throughput	DL TCP Throughput DL MAC Throughput in MCG DL MAC Throughput in SCG			
[TBD]	[TBD]	[TBD]	[TBD]	

9.4.6 Bi-direction Data Transmission, Power Consumption, NSA

9.4.6.1 Power Consumption with Bidirectional Data Transfer, NSA (SCG – 64 QAM)

9.4.6.1.1 Test Purpose

Setup a SCG bearer with NR as DL/UL data path with typical transmit level.. Measure the power consumption with DRX configured on MCG cell when UE transmits and receives UDP data simultaneously with a power of 0 dBm

9.4.6.1.2 Reference specification

TS 36.508, TS 38.331, TS 38.300

9.4.6.1.3 Applicability

This test applies to Type 1 and Type 3 devices as described in clause 4.2.

9.4.6.1.4 Test conditions

[SS configuration] Cell A is E-UTRAN Cell, CellB is a NR Cell. Cell A supports NSA

E-UTRAN Cell A Cell Id=01 TAC = 01

MCC-MNC = 460-00 EARFCN= f1 rootSequenceIndex = 0 Reference Signal EPRE= -85 dBm/15kHz upperLayerIndication-r15=true

NR Cell B

Cell Id=02 TAC = 01 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -125 dBm/30kHz RB Allocation UL = Full RB Allocation DL = Full UL Modulation / Coding = 28 mcs-Table in PUSCH-Config = qam64 DL Modulation / Coding = 28 mcs-Table in PDSCH-Config = qam64 P_Max = 0 dBm DL MIMO = 4X4

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in NSA mode.

[Initial conditions]

SS

UE

E-UTRAN Cell A is not active NR Cell B is not active The test shall be performed under ideal radio conditions.

UE is powered off

9.4.6.1.5 Test procedure

Table 9.4.6.1.55.1.1.5-1: Time of cell power level and parameter changes

Time	E-UTRAN Cell A	NR Cell C	Remark
то	-85	-90	

PREAMBLE

- 1. Activate E-UTRAN Cell A, NR Cell B.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 9.4.6.1.5-1.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure with activation of the initial default EPS bearer

on Cell A (see 36.508, 4.5.2).

- 5. The SS sends an ue-CapabilityRequest including the RAT type "eutra-nr".
- 6. Verify the UE sends UECapabilityInformation message including the RAT type "eutra-nr".
- 7. The SS sends an RRCConnectionReconfiguration message containing NR RRCReconfiguration message to add Cell B as NR PS-Cell with SCG DRB.
- 8. The UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.

MAIN BODY

- 9. SS transmits RRCConnectionReconfiguration to configure specific DRX parameters on MCG E-UTRAN Cell A. Refer to Table 9.2.1.4.5-2 for E-UTRAN DRX parameters for MCG.
- 10. The power consumption tester records the changes of current.
- 11. Setup a UDP session and verify that UE downloads/uploads data simultaneously. Verify that data transfer happening in NR data path. Verify that UE TX power meeting the requirement in test conditions. Keep the service for 5 minutes
- 12. Get the value of power consumption tester during step 10 and calculate the average throughput at transport layer
- 13. Repeat Step 9 to 12 for two more time
- 14. Calculate the overall average power consumption and throughput at the transport layer

POSTAMBLE

- 15. The SS initiates a Detach procedure.
- 16. The SS initiates a RRC release procedure.
- 17. Deactivate E-UTRAN Cell A and NR Cell B.

Derivation Path: TS 36.331, clause 6.3.2		
Information Element	Value/remark	Comment
drx-Config CHOICE {		
setup SEQUENCE {		
onDurationTimer	psf8	
}		
drx-InactivityTimer	psf60	
drx-RetransmissionTimer	psf4	
longDRX-CycleStartOffset CHOICE {		
sf160	0	
}		
shortDRX	Not present	
}		
}		

Table 9.2.1.4.5-2: E-UTRAN DRX Parameters for MCG

Step		I	Message Sequence	1	Verdict
	U-S	Layer	Message	Specific	
				Contents	
			Connect the power consumption tester to the UE		
1	←	RRC	Activate E-UTRAN Cell A and NR Cell B.		
2			SS configures the initial power according to TO in		
			Table 9.4.6.1.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure with		PASS
	÷	RRC	activation of the initial default EPS bearer on Cell		
			A (see 36.508, 4.5.2).		
5	(RRC	The SS sends an ue-CapabilityRequest including		
			the RAT type "eutra-nr".		
6	\rightarrow	RRC	Verify the UE sends UECapabilityInformation		PASS
			message including the RAT type "eutra-nr".		
7	÷	NAS	SS sends an RRCConnectionReconfiguration		
		RRC	message containing NR RRCReconfiguration		
			message to add Cell B as NR PS-Cell with SCG DRB.		
8	\rightarrow	RRC	UE sends an		PASS
			RRCConnectionReconfigurationComplete message		
			containing NR RRCReconfigurationComplete		
			message.		
9	~	NAS	SS transmits RRCConnectionReconfiguration to	Table	
		RRC	configure specific MCG DRX parameters.	9.2.1.4.5-2 for	
				DRX	
				parameters	
10	\rightarrow	NAS	UE transmits		PASS
		RRC	RRCConnectionReconfigurationComplete		
11			Power consumption tester records the chnages of		
			current a		
12	÷	UE	UE downloads/uploads the data correctly in NR		PASS
			data path. Keep services for 5 minutes		
13			Get the power concumption tester values and		
			note down the throughput value at transport layer		
14			Repeat step 9 to 13 for two times		
15			Calculate the overall average power consumption		
			value and UDP Data throughput		
16	\rightarrow	NAS	SS initiates a Detach procedure.		PASS
	÷				
17	~	RRC	SS initiates a RRC release procedure.		
18			Deactivate E-UTRAN Cell A and NR Cell B.		1

9.4.6.1.6 Expected Result

Record the average UDP throughput and current in the Table 错误!未找到引用源。-1. The Current Should be less than [TBD]mA.

UL UDP Throughput (Mbps)	DL UDP Throughput (Mbps)	Average Current (mA)
[TBD]	[TBD]	[TBD]

Table 错误!未找到引用源。-1: Average throughput and current

9.4.6.2 Power Consumption with Bidirectional Data Transfer, NSA (MCG & SCG – 64 QAM)

9.4.6.2.1 Test Purpose

Setup a MCG & SCG data bearer with with typical transmit level in a NSA cell. Measure the power consumption when UE transmits and receives UDP data simultaneously with a power of 0 dBm for both LTE and NR cell

9.4.6.2.2 Reference specification

TS 36.508, TS 38.331, TS 38.300

9.4.6.2.3 Applicability

This test applies to Type 1 and Type 3 devices as described in clause 4.2.

9.4.6.2.4 Test conditions

[SS configuration] Cell A is E-UTRAN Cell, CellB is a NR Cell. Cell A supports NSA

```
E-UTRAN Cell A
Cell Id=01 TAC = 01
MCC-MNC = 460-00
EARFCN= f1
rootSequenceIndex = 0
Reference Signal EPRE= -85 dBm/15kHz
RB Allocation UL = Full
RB Allocation UL = Full
UL Modulation / Coding = 27
DL Modulation / Coding = 27
UL 64QAM = TRUE
DL 256QAM = FALSE
P_Max = 0 dBm
upperLayerIndication-r15=true
DL MIMO = 2X2
```



```
Cell Id=02 TAC = 01
MCC = 460 MNC = 00
NR-ARFCN= f1
SS/PBCH SSS EPRE = -125 dBm/30kHz
RB Allocation UL = Full
RB Allocation DL = Full
UL Modulation / Coding = 28
mcs-Table in PUSCH-Config = qam64
DL Modulation / Coding = 28
mcs-Table in PDSCH-Config = qam64
P_Max = 0 dBm
DL MIMO = 4X4
```

[UE configuration]

The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in NSA mode.

[Initial conditions]

SS

E-UTRAN Cell A is not active NR Cell B is not active DL MCS = 22 UL MCS = 18 The test shall be performed under ideal radio conditions.

UE

UE is powered off

9.4.6.2.5 Test procedure

Table 5.1.1.5-1: Time of cell power level and parameter changes

Time	E-UTRAN Cell A	NR Cell C	Remark
то	-85	-90	

PREAMBLE

- 1. Activate E-UTRAN Cell A, NR Cell B.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 9.4.6.2.5-1.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure with activation of the initial default EPS bearer on Cell A (see 36.508, 4.5.2).
- 5. The SS sends an ue-CapabilityRequest including the RAT type "eutra-nr".
- 6. Verify the UE sends UECapabilityInformation message including the RAT type "eutra-nr".
- 7. The SS sends an RRCConnectionReconfiguration message containing NR RRCReconfiguration message to add Cell B as NR PS-Cell with SCG DRB in addition with MCG bearer.

8. The UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.

MAIN BODY

- 9. The power consumption tester records the changes of.
- 10. Setup a UDP session and verify that UE downloads/uploads data simultaneously. Verify that data transfer happening in both MCG and SCG bearers. Verify that UE TX power meeting the requirement in test conditions. Keep the service for 5 minutes
- 11. Get the value of power consumption tester during step 10 and calculate the average throughput at transport layer
- 12. Repeat Step 9 to 11 for two more time
- 13. Calculate the overall average power consumption and throughput at the transport layer

POSTAMBLE

- 14. The SS initiates a Detach procedure.
- 15. The SS initiates a RRC release procedure.
- 16. Deactivate E-UTRAN Cell A and NR Cell B.

Step	Message Sequence			Verdict	
	U-S	Layer	Message	Specific	
				Contents	
			Connect the power consumption tester to the UE		
1	←	RRC	Activate E-UTRAN Cell A and NR Cell B.		
2			SS configures the initial power according to TO in		
			Table 9.4.6.2.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure with		PASS
	←	RRC	activation of the initial default EPS bearer on Cell		
			A (see 36.508, 4.5.2).		
5	÷	RRC	The SS sends an ue-CapabilityRequest including		
			the RAT type "eutra-nr".		
6	\rightarrow	RRC	Verify the UE sends UECapabilityInformation		PASS
			message including the RAT type "eutra-nr".		
7	←	NAS	SS sends an RRCConnectionReconfiguration		
		RRC	message containing NR RRCReconfiguration		
			message to add Cell B as NR PS-Cell with SCG		
			DRB in addition with existing MCG DRB		
8	\rightarrow	RRC	UE sends an		PASS
			RRCConnectionReconfigurationComplete		
			message containing NR		
			RRCReconfigurationComplete message.		
9			Power consumption tester records the changes		

Table 5.1.1.5-2: Message Sequence

			of current	
10	÷	UE	UE downloads/uploads the data correctly in both	PASS
			MCG and SCG data path. Keep services for 5	
			minutes	
11			Get the power concumption tester values and	
			note down the throughput value at transport	
			layer	
12			Repeat step 9 to 11 for two times	
13			Calculate the overall average power	
			consumption value and UDP Data throughput	
14	\rightarrow	NAS	SS initiates a Detach procedure.	PASS
	÷			
15	÷	RRC	SS initiates a RRC release procedure.	
16			Deactivate E-UTRAN Cell A and NR Cell B.	

9.4.6.2.6 Expected Result

Record the average UDP throughput and current in the Table 错误!未找到引用源。-1. The Current Should be less than [TBD]mA

Table 错误!未找到引用源。-1: Average throughput and current

UL UDP Throughput (Mbps)	DL UDP Throughput (Mbps)	Average Current (mA)

9.4.6.3 Power Consumption with Bidirectional Data Transfer, NSA (SCG – 256 QAM)

9.4.6.3.1 Test Purpose

Setup a SCG bearer with NR as DL/UL data path with maximum transmit level. Measure the power consumption with DRX configured on MCG cell when UE transmits and receives UDP data simultaneously with a power of 23 dBm

9.4.6.3.2 Reference specification

TS 36.508, TS 38.331, TS 38.300

9.4.6.3.3 Applicability

This test applies to Type 1 and Type 3 devices as described in clause 4.2.

9.4.6.3.4 Test conditions

[SS configuration] Cell A is E-UTRAN Cell, CellB is a NR Cell. Cell A supports NSA

E-UTRAN Cell A

Cell Id=01 TAC = 01 MCC-MNC = 460-00 EARFCN= f1 rootSequenceIndex = 0 Reference Signal EPRE= -85 dBm/15kHz upperLayerIndication-r15=true

NR Cell B

Cell Id=02 TAC = 01 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -125 dBm/30kHz RB Allocation UL = Full RB Allocation DL = Full UL Modulation / Coding = 25 mcs-Table in PUSCH-Config = qam256 DL Modulation / Coding = 27 mcs-Table in PDSCH-Config = qam256 P_Max = 23 dBm DL MIMO = 4X4

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in NSA mode.

[Initial conditions]

SS

E-UTRAN Cell A is not active NR Cell B is not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

9.4.6.3.5 Test procedure

Table 5.1.1.5-1: 1	Time of cell now	er level and nar	ameter changes
	inne or een pow	ci icvei unu pui	unicter chunges

Time	E-UTRAN Cell A	NR Cell C	Remark
Т0	-85	-75	

PREAMBLE

- 1. Activate E-UTRAN Cell A, NR Cell B.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 9.4.6.3.5-1.
- 3. The UE is powered ON.

- 4. The UE performs the registration procedure with activation of the initial default EPS bearer on Cell A (see 36.508, 4.5.2).
- 5. The SS sends an ue-CapabilityRequest including the RAT type "eutra-nr".
- 6. Verify the UE sends UECapabilityInformation message including the RAT type "eutra-nr".
- 7. The SS sends an RRCConnectionReconfiguration message containing NR RRCReconfiguration message to add Cell B as NR PS-Cell with SCG DRB.
- 8. The UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.

MAIN BODY

- 9. SS transmits RRCConnectionReconfiguration to configure specific DRX parameters on MCG E-UTRAN Cell A. Refer to Table 9.2.1.4.5-2 for E-UTRAN DRX parameters for MCG.
- 10. The power consumption tester records the changes of current.
- 11. Setup a UDP session and verify that UE downloads and uploads data simultaneously. Verify that data transfer happening in NR data path. Verify that UE TX power meeting the requirement in test conditions. Keep the service for 5 minutes
- 12. Get the value of power consumption tester during step 11 and calculate the average throughput at transport layer
- 13. Repeat Step 9 to 12 for two more time
- 14. Calculate the overall average power consumption and throughput at the transport layer

POSTAMBLE

- 15. The SS initiates a Detach procedure.
- 16. The SS initiates a RRC release procedure.
- 17. Deactivate E-UTRAN Cell A and NR Cell B.

Derivation Path: TS 36.331, clause 6.3.2		
Information Element	Value/remark	Comment
drx-Config CHOICE {		
setup SEQUENCE {		
onDurationTimer	psf8	
}		
drx-InactivityTimer	psf60	
drx-RetransmissionTimer	psf4	
longDRX-CycleStartOffset CHOICE {		
sf160	0	
}		
shortDRX	Not present	
}		
}		

Table 9.2.1.4.5-2: E-UTRAN DRX Parameters for MCG

			5 1		
Step		Message Sequence		Verdict	
	U-S	Layer	Message	Specific Contents	
			Connect the power consumption tester to		
			the UE		
1	←	RRC	Activate E-UTRAN Cell A and NR Cell B.		
2			SS configures the initial power according to		
			T0 in Table 9.4.6.3.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure with		PASS
	÷	RRC	activation of the initial default EPS bearer on		
			Cell A (see 36.508, 4.5.2).		
5	÷	RRC	The SS sends an ue-CapabilityRequest		
			including the RAT type "eutra-nr".		
6	\rightarrow	RRC	Verify the UE sends UECapabilityInformation		PASS
			message including the RAT type "eutra-nr".		
7	←	NAS	SS sends an RRCConnectionReconfiguration		
		RRC	message containing NR RRCReconfiguration		
			message to add Cell B as NR PS-Cell with SCG		
			DRB.		
8	\rightarrow	RRC	UE sends an		PASS
			RRCConnectionReconfigurationComplete		
			message containing NR		
			RRCReconfigurationComplete message.		
9	÷	NAS	SS transmits RRCConnectionReconfiguration	Table 9.2.1.4.5-2 for	
		RRC	to configure specific MCG DRX parameters.	DRX parameters	
10	\rightarrow	NAS	UE transmits		PASS
		RRC	RRCConnectionReconfigurationComplete		
11			Power consumption tester records the		
			chnages of current		
12	←	UE	UE downloads/uploads the data correctly in		PASS
			NR data path. Keep services for 5 minutes		
13			Get the power concumption tester values		
			and note down the throughput value at		
			transport layer		
14			Repeat step 9 to 13 for two times		
15			Calculate the overall average power		
			consumption value and UDP Data throughput		
16	\rightarrow	NAS	SS initiates a Detach procedure.		PASS
	÷				
17	~	RRC	SS initiates a RRC release procedure.		
18			Deactivate E-UTRAN Cell A and NR Cell B.		
	1	I	1	1	I

Table 5	115-3		Sequence
Idule J	.1.1.3-3	. iviessage	Sequence

9.4.6.3.6 Expected Result

Record the average UDP throughput and current in the Table 错误!未找到引用源。-1. The Current Should be less than [TBD]mA

UL UDP Throughput (Mbps)	DL UDP Throughput (Mbps)	Average Current (mA)
[TBD]	[TBD]	[TBD]

Table 错误!未找到引用源。-1: Average throughput and current

9.4.6.4 Power Consumption with Bidirectional Data Transfer, NSA (MCG & SCG – 256 QAM)

9.4.6.4.1 Test Purpose

Setup a MCG & SCG data bearer with with typical transmit level in a NSA cell. Measure the power consumption when UE transmits and receives UDP data simultaneously with a power of 23 dBm for both LTE and NR cell

9.4.6.4.2 Reference specification

TS 36.508, TS 38.331, TS 38.300

9.4.6.4.3 Applicability

This test applies to Type 1 and Type 3 devices as described in clause 4.2.

9.4.6.4.4 Test conditions

[SS configuration] Cell A is E-UTRAN Cell, CellB is a NR Cell. Cell A supports NSA

E-UTRAN Cell A Cell Id=01 TAC = 01 MCC-MNC = 460-00 EARFCN= f1 rootSequenceIndex = 0 Reference Signal EPRE= -85 dBm/15kHz RB Allocation UL = Full RB Allocation UL = Full UL Modulation / Coding = 27 DL Modulation / Coding = 27 UL 64QAM = TRUE DL 256QAM = TRUE P_Max = 10 dBm upperLayerIndication-r15=true DL MIMO = 2X2


```
Cell Id=02 TAC = 01
MCC = 460 MNC = 00
NR-ARFCN= f1
SS/PBCH SSS EPRE = -125 dBm/30kHz
RB Allocation UL = Full
RB Allocation DL = Full
UL Modulation / Coding = 25
mcs-Table in PUSCH-Config = qam256
DL Modulation / Coding = 27
mcs-Table in PDSCH-Config = qam256
P_Max = 23 dBm
DL MIMO = 4X4
```

[UE configuration]

The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in NSA mode.

[Initial conditions]

SS

E-UTRAN Cell A is not active

NR Cell B is not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

9.4.6.4.5 Test procedure

Table 5.1.1.5-1: Time of cell power level and parameter changes

Time	E-UTRAN Cell A	NR Cell C	Remark
то	-85	-75	

PREAMBLE

- 1. Activate E-UTRAN Cell A, NR Cell B.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 9.4.6.4.5-1.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure with activation of the initial default EPS bearer on Cell A (see 36.508, 4.5.2).
- 5. The SS sends an ue-CapabilityRequest including the RAT type "eutra-nr".
- 6. Verify the UE sends UECapabilityInformation message including the RAT type "eutra-nr".
- 7. The SS sends an RRCConnectionReconfiguration message containing NR RRCReconfiguration message to add Cell B as NR PS-Cell with SCG DRB in addition with MCG bearer.
- 8. The UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.

MAIN BODY

- 9. The power consumption tester records the changes of current.
- 10. Setup a UDP session and verify that UE downloads and uploads data simultaneously. Verify that data transfer happening in both MCG and SCG bearers. Verify that UE TX power meeting the requirement in test conditions. Keep the service for 5 minutes
- 11. Get the value of power consumption tester during step 10 and calculate the average throughput at transport layer
- 12. Repeat Step 9 to 11 for two more time
- 13. Calculate the overall average power consumption and throughput at the transport layer

POSTAMBLE

- 14. The SS initiates a Detach procedure.
- 15. The SS initiates a RRC release procedure.
- 16. Deactivate E-UTRAN Cell A and NR Cell B.

			Table J.1.1.J-2. Message Sequence		
Step	p		Message Sequence		Verdict
	U-S	Layer	Message	Specific Contents	
			Connect the power consumption tester to		
			the UE		
1	÷	RRC	Activate E-UTRAN Cell A and NR Cell B.		
2			SS configures the initial power according to		
			T0 in Table 9.4.6.4.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure with		PASS
	←	RRC	activation of the initial default EPS bearer on		
			Cell A (see 36.508, 4.5.2).		
5	÷	RRC	The SS sends an ue-CapabilityRequest		
			including the RAT type "eutra-nr".		
6	\rightarrow	RRC	Verify the UE sends UECapabilityInformation		PASS
			message including the RAT type "eutra-nr".		
7	←	NAS	SS sends an RRCConnectionReconfiguration		
		RRC	message containing NR RRCReconfiguration		
			message to add Cell B as NR PS-Cell with SCG		
			DRB in addition with existing MCG DRB		
8	\rightarrow	RRC	UE sends an		PASS
			RRCConnectionReconfigurationComplete		
			message containing NR		
			RRCReconfigurationComplete message.		
9			Power consumption tester records the		
			changes of current		
10	←	UE	UE downloads/uploads the data correctly in		PASS

Table 5.1.1.5-2: Message Sequence

GTI 5G Function and Performance Test Specification v4.2 – September 2021

			both MCG and SCG data path. Keep services for 5 minutes	
11			Get the power concumption tester values and note down the throughput value at transport layer	
12			Repeat step 9 to 11 for two times	
13			Calculate the overall average power consumption value and UDP Data throughput	
14	$\rightarrow \\ \leftarrow$	NAS	SS initiates a Detach procedure.	PASS
15	÷	RRC	SS initiates a RRC release procedure.	
16			Deactivate E-UTRAN Cell A and NR Cell B.	

9.4.6.4.6 Expected Result

Record the average UDP throughput and current in the Table 错误!未找到引用源。-1. The Current Should be less than [TBD]mA

Table 错误!未找到引用源。-1: Average throughput and	current
--	---------

UL UDP Throughput (Mbps)	DL UDP Throughput (Mbps)	Average Current (mA)
[TBD]	[TBD]	[TBD]

9.5 Power Consumption - Inactive Mode

9.5.1 RRC Inactive Mode, Power Consumption, SA

9.5.1.1 Test Purpose

When UE enters RRC_Inactive State after Registering in NR cell, Measure the power consumption.

9.5.1.2 Reference specification

TS 38.304, TS 38.331, TS 38.300

9.5.1.3 Applicability

This test applies to the device that supports SA or SA+NSA.

9.5.1.4 Test conditions

[SS configuration] Cell A is a NR Cell. Cell A supports only SA

NR Cell A Cell Id=01 TAC = 01 MCC = 460 MNC = 00

NR Band = n41 NR-ARFCN= f1 Bandwidth = 100 MHz SS/PBCH SSS EPRE = -125 dBm/30kHz t380 = min10

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in SA mode.

[Initial conditions]

SS

NR Cell A is not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

9.5.1.5 Test procedure

Time	NR Cell A	Remark
TO	-75	

PREAMBLE

- 1. Activate NR Cell A.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 9.5.1.5-1.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure on Cell A (see 38.508, Table 4.5.2.2-2 till Step 18).
- 5. Verify that Data tranfer(Ping) perofrmed on NR cell A
- 6. The RRC connection is released by the SS with suspendConfig to make UE to enter into Inactive Mode. The UE enters Registered, Inactive Mode

MAIN BODY

- 7. Wait for 3 minutes and then start power consumption tester records the changes of current and voltage for another 3 minutes
- 8. SS initiates paging message to UE
- 9. Verify that UE is initiating RRC Resume Procedure by sending RRCResumeRequest to SS
- 10. SS transmits RRCResume message to the UE
- 11. Verify that UE is sending RRCResumeComplete to SS

POSTAMBLE

- 12. The SS initiates a Deregitration procedure.
- 13. The SS initiates a RRC release procedure.
- 14. Deactivate NR Cell A.

			Table 5.1.1.5-2. Message Sequence		
Step	Message Sequence		Verdict		
	U-S	Layer	Message	Specific Contents	
			Connect the power consumption tester to		
			the UE		
1	÷	RRC	Activate NR Cell A.		
2			SS configures the initial power according to		
			T0 in Table 9.5.1.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure (see		PASS
	←	RRC	38.508, Table 4.5.2.2-2 till Step 18).		
5			Verify the data transmission is performed		PASS
			successfully on NR Cell A.		
6	÷	RRC	The RRC connection is released by the SS		
			with suspendConfig.		
7			Wait for 3 minutes and then start power		
			consumption tester records the changes of		
			current and voltage for another 3 minutes		
8	←	RRC	Paging		
9	\rightarrow	RRC	RRCResumeRequest		PASS
10	÷	RRC	RRCResume		
11	\rightarrow	RRC	RRCResumeComplete		PASS
12	\rightarrow	NAS	SS initiates a Deregitration procedure.		PASS
	←				
13	÷	RRC	SS initiates a RRC release procedure.		
14			Deactivate NR Cell A.		
-					

9.5.1.6 Expected Result

The Current Should be less than [TBD]mA

9.5.2 RRC Inactive Mode – RNA Update Timer Expiry, Power Consumption

9.5.2.1 Test Purpose

When RNA Update timer expires in RRC Inactive Mode verify that UE initiates RRC Connection Resume Procedure for RNA Update and measure the power consumption

9.5.2.2 Reference specification

TS 38.304, TS 38.331, TS 38.300

9.5.2.3 Applicability

This test applies to the device that supports SA or SA+NSA.

9.5.2.4 Test conditions

[SS configuration] Cell A is a NR Cell. Cell A supports only SA

NR Cell A

Cell Id=01 TAC = 01 MCC = 460 MNC = 00 NR Band = n41 NR-ARFCN= f1 Bandwidth = 100 MHz SS/PBCH SSS EPRE = -125 dBm/30kHz T380 = min5

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in SA mode.

[Initial conditions] SS NR Cell A is not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

9.5.2.5 Test procedure

Table 5.1.1.55-1: Time of cell power level and parameter changes

Time	NR Cell A	Remark
ТО	-75	

PREAMBLE

- 1. Activate NR Cell A.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 9.5.2.5-1.

- 3. The UE is powered ON.
- 4. The UE performs the registration procedure on Cell A (see 38.508, Table 4.5.2.2-2 till Step 18).
- 5. Verify that Data tranfer(Ping) perofrmed on NR cell A

MAIN BODY

- 6. The RRC connection is released by the SS with suspendConfig. The UE enters Registered, Inactive Mode
- 7. Start the power consumption tester which records the changes of current and Voltage Wait for t380 timer duration expiry
- 8. After t380 expiry Verify that UE is initiating RRC Resume Procedure by sending RRCResumeRequest with resume cause set as 'rna-Update' to SS
- 9. SS transmits RRCResume message to the UE
- 10. Verify that UE is sending RRCResumeComplete to SS
- 11. Get the value of power consumption tester during Step 8 to Step 9
- 12. Verify that Data tranfer(Ping) perofrmed on NR cell A

POSTAMBLE

- 13. The SS initiates a Deregitration procedure.
- 14. The SS initiates a RRC release procedure.
- 15. Deactivate NR Cell A.

	r		Table 5.1.1.5-2. Message Sequence		-
Step	Message Sequence			Verdict	
	U-S	Layer	Message	Specific Contents	
			Connect the power consumption tester to		
			the UE		
1	←	RRC	Activate NR Cell A.		
2			SS configures the initial power according to		
			T0 in Table 9.5.2.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure (see		PASS
	←	RRC	38.508, Table 4.5.2.2-2 till Step 18).		
5			Verify the data transmission is performed		PASS
			successfully on NR Cell A.		
6	←	RRC	The RRC connection is released by the SS		
			with suspendConfig.		
7			Start Power consumption tester to record the		
			chnages of current and voltage and Wait for		
			t380 timer duration to expire		
8	\rightarrow	RRC	RRCResumeRequest with resume cause		PASS

Table 5.1.1.5-2: Message Sequence

			rna-update	
9	÷	RRC	RRCResume	
10	\rightarrow	RRC	RRCResumeComplete	PASS
11			Verify the data transmission is performed	PASS
			successfully on NR Cell A.	
12	\rightarrow	NAS	SS initiates a Deregitration procedure.	PASS
	÷			
13	÷	RRC	SS initiates a RRC release procedure.	
14			Deactivate NR Cell A.	

9.5.2.6 Expected Result

The Current Should be less than [TBD]mA

9.6 BWP, Power Consumption

9.6.1 Downlink Data Transmission with different BWP, Power Consumption, SA

9.6.1.1 Test Purpose

To measure UE power consumption of donwlink data transmission with different BWP configuration in SA mode.

9.6.1.2 Reference specification

TS 38.321, clause 5.15 TS 38.331, clause 5.2.1, clause 5.3.5.3

9.6.1.3 Applicability

This test applies to Type 1 and Type 2 devices as described in clause 4.2

9.6.1.4 Test conditions

[SS configuration] Cell A is a NR Cell. Cell A supports only SA

NR Cell A Cell Id=01 TAC = 01 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -80 dBm/30kHz DL Modulation / Coding= 20 DL RB=50 mcs-Table in PDSCH-Config = qam64 UL TX Power=0dBm

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in SA mode.

[Initial conditions]

SS

NR Cell A is not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

9.6.1.5 Test procedure

PREAMBLE

- 1. Activate NR Cell A. The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to test conditions.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure on Cell A (see 38.508, Table 4.5.2.2-2 till Step 15).

MAIN BODY

- 5. SS transmits NR RRCConnectionReconfiguration to configure DL BWP and UL BWP with BWP-ID=1 and bandwidth=100MHz. Refer to Table 9.6.1.5-1 and Table 9.6.1.5-2 for BWP parameters
- 6. UE transmits RRCConnectionReconfigurationComplete
- Setup donwlink TCP session and verify that UE downloads data correctly by using BWP-ID =
 1.
- 8. Start power consumption tester records the changes of current for 3 minutes
- 9. Stop power consumption measurement. Stop data transmission
- 10. SS sends RRCRelease. UE returns to Idle mode.
- 11. Wait for 2 minutes. The SS transmits a Paging message. UE is in RRCConnected mode.
- 12. SS transmits NR RRCConnectionReconfiguration to configure DL BWP and UL BWP with BWP-ID=1 and bandwidth=20MHz. Refer to Table 9.6.1.5-1 and Table 9.6.1.5-3 for BWP parameters.
- Setup downlink TCP session and verify that UE downloads data correctly by using BWP-ID =
 1.
- 14. Start power consumption tester records the changes of current for 3 minutes
- 15. Stop power consumption measurement. Stop data transmission

POSTAMBLE

- 16. The SS initiates a Deregitration procedure.
- 17. The SS initiates a RRC release procedure.

18. Deactivate NR Cell A.

Table 9.6.1.5-1: BWP configuration	
------------------------------------	--

Derivation Path: TS 38.508-1 [4], Table 4.6.3-167		
Information Element	Value/remark	Comment
ServingCellConfig ::= SEQUENCE {		
downlinkBWP-ToReleaseList	Not Present	
downlinkBWP-ToAddModList SEQUENCE (SIZE (1))		
OF BWP-Downlink		
BWP-Downlink [1] SEQUENCE {		
bwp-Id	1	
bwp-Common SEQUENCE {		
genericParameters	BWP	9.6.1.5-2 /9.6.1.5-3
}		
}		
firstActiveDownlinkBWP-Id	1	
bwp-InactivityTimer	Not present	
defaultDownlinkBWP-Id	Not present	
uplinkConfig SEQUENCE {		
uplinkBWP-ToReleaseList	Not Present	
uplinkBWP-ToAddModList SEQUENCE (SIZE (1))		
OF BWP-Uplink		
BWP-Uplink[1] SEQUENCE {		
bwp-Id	1	
BWP-UplinkCommon ::= SEQUENCE {		
genericParameters	BWP	9.6.1.5-2 / 9.6.1.5-3
}		
}		
firstActiveUplinkBWP-Id	1	
}		
}		

Derivation Path: TS 38.331 [6], clause 6.3.2			
Information Element	Value/remark	Comment	

BWP ::= SEQUENCE {		
locationAndBandwidth	1099	100M
subcarrierSpacing	kHz30	
cyclicPrefix	Not present	
}		

Table 9.6.1.5-3: BWP Parameters in step 12

Derivation Path: TS 38.331 [6], clause 6.3.2			
Information Element	Value/remark	Comment	
BWP ::= SEQUENCE {			
locationAndBandwidth	13750	20M	
subcarrierSpacing	kHz30		
cyclicPrefix	Not present		
}			

9.6.1.6 Expected Result

Record the average current in step 8 and step 14.

Table 9.2.1.2.6-1: Test Results

Test Step	Average Current(mA)
Step 8: BWP=100MHz	
Step 14: BWP=20MHz	

9.6.2 Uplink Data Transmission with different BWP, Power Consumption, SA

9.6.2.1 Test Purpose

To measure UE power consumption of uplink data transmission with different BWP configuration in SA mode.

9.6.2.2 Reference specification

TS 38.321, clause 5.15 TS 38.331, clause 5.2.1, clause 5.3.5.3

9.6.2.3 Applicability

This test applies to Type 1 and Type 2 devices as described in clause 4.2

9.6.2.4 Test conditions

[SS configuration] Cell A is a NR Cell. Cell A supports only SA

NR Cell A Cell Id=01 TAC = 01 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE = -80 dBm/30kHz UL Modulation / Coding= 20 UL RB=50 mcs-Table in PUSCH-Config = qam64 UL TX Power=0dBm

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in SA mode.

[Initial conditions]

SS

NR Cell A is not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

9.6.2.5 Test procedure

PREAMBLE

- 1. Activate NR Cell A. The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to test conditions.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure on Cell A (see 38.508, Table 4.5.2.2-2 till Step 15).

MAIN BODY

- 5. SS transmits NR RRCConnectionReconfiguration to configure DL BWP and UL BWP with BWP-ID=1 and bandwidth=100MHz. Refer to Table 9.6.1.5-1 and Table 9.6.1.5-2 for BWP parameters
- 6. UE transmits RRCConnectionReconfigurationComplete
- 7. Setup uplink TCP session and verify that UE transmits data correctly by using BWP-ID = 1.
- 8. Start power consumption tester records the changes of current for 3 minutes
- 9. Stop power consumption measurement. Stop data transmission
- 10. SS sends RRC Release. UE returns to Idle mode.
- 11. Wait for 2 minutes. The SS transmits a Paging message. UE is in RRCConnected mode.
- 12. SS transmits NR RRCConnectionReconfiguration to configure DL BWP and UL BWP with BWP-ID=1 and bandwidth=20MHz. Refer to Table 9.6.1.5-1 and Table 9.6.1.5-3 for BWP parameters.

- 13. Setup uplink TCP session and verify that UE transmits data correctly by using BWP-ID = 1.
- 14. Start power consumption tester records the changes of current for 3 minutes
- 15. Stop power consumption measurement. Stop data transmission

POSTAMBLE

- 16. The SS initiates a Deregitration procedure.
- 17. The SS initiates a RRC release procedure.
- 18. Deactivate NR Cell A.

9.6.2.6 Expected Result

Record the average current in step 8 and step 14.

Table 9.2.1.2.6-1: Test Results

Test Step	Average Current(mA)
Step 8: BWP=100MHz	
Step 14: BWP=20MHz	

9.6.3 Downlink Data Transmission with different BWP, Power Consumption, NSA

9.6.3.1 Test Purpose

To measure UE power consumption of donwlink data transmission with different BWP configuration in NSA mode.

9.6.3.2 Reference specification

TS 38.321, clause 5.15 TS 38.331, clause 5.2.1, clause 5.3.5.3

9.6.3.3 Applicability

This test applies to Type 1 and Type 3 devices as described in clause 4.2

9.6.3.4 Test conditions

[SS configuration] Cell A is E-UTRAN Cell, CellB is a NR Cell. Cell A supports NSA

E-UTRAN Cell A Cell Id=01 TAC = 01 MCC-MNC = 460-00 EARFCN= f1 rootSequenceIndex = 0 Reference Signal EPRE= -85 dBm/15kHz

upperLayerIndication-r15=true

NR Cell B Cell Id=02 TAC = 01 NR-ARFCN= f1 SS/PBCH SSS EPRE = -80 dBm/30kHz DL Modulation / Coding= 20 DL RB=50 mcs-Table in PDSCH-Config = qam64 UL TX Power=0dBm

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in NSA mode.

[Initial conditions]

SS

UE

E-UTRAN Cell A is not active NR Cell B is not active The test shall be performed under ideal radio conditions.

UE is powered off

9.6.3.5 Test procedure

PREAMBLE

- 1. Activate E-UTRAN Cell A, NR Cell B.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to test conditions.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure with activation of the initial default EPS bearer on Cell A (see 36.508, 4.5.2).
- 5. The SS sends an ue-CapabilityRequest including the RAT type "eutra-nr".
- 6. Verify the UE sends UECapabilityInformation message including the RAT type "eutra-nr".

MAIN BODY

- 7. The SS sends an RRCConnectionReconfiguration message containing NR RRCReconfiguration message to add Cell B as NR PS-Cell with SCG DRB and configure DL BWP and UL BWP with BWP-ID=1 and bandwidth=100MHz. Refer to Table 9.6.1.5-1 and Table 9.6.1.5-2 for BWP parameters
- 8. The UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.
- Setup downlink TCP session and verify that UE downloads data correctly by using BWP-ID =
 1.

- 10. Start power consumption tester records the changes of current for 3 minutes
- 11. Stop power consumption measurement. Stop data transmission
- 12. SS releases RRC connection in both cell A and cell B. UE returns to Idle mode.
- 13. Wait for 2 minutes. The SS transmits a Paging message. UE is in LTE RRCConnected mode.
- 14. The SS sends an RRCConnectionReconfiguration message containing NR RRCReconfiguration message to add Cell B as NR PS-Cell with SCG DRB and configure DL BWP and UL BWP with BWP-ID=1 and bandwidth=20MHz. Refer to Table 9.6.1.5-1 and Table 9.6.1.5-3 for BWP parameters
- Setup downlink TCP session and verify that UE downloads data correctly by using BWP-ID =
 1.
- 16. Start power consumption tester records the changes of current for 3 minutes
- 17. Stop power consumption measurement. Stop data transmission

POSTAMBLE

- 18. The SS initiates a Detach procedure.
- 19. The SS initiates a RRC release procedure.
- 20. Deactivate E-UTRAN Cell A and NR Cell B.

9.6.3.6 Expected Result

Record the average current in step 8 and step 14.

Table 9.2.1.2.6-1: Test Results

Test Step	Average Current(mA)
Step 10: BWP=100MHz	
Step 16: BWP=20MHz	

9.6.4 Uplink Data Transmission with different BWP, Power Consumption, NSA

9.6.4.1 Test Purpose

To measure UE power consumption of uplink data transmission with different BWP configuration in NSA mode.

9.6.4.2 Reference specification

TS 38.321, clause 5.15 TS 38.331, clause 5.2.1, clause 5.3.5.3

9.6.4.3 Applicability

This test applies to Type 1 and Type 3 devices as described in clause 4.2

9.6.4.4 Test conditions

[SS configuration] Cell A is E-UTRAN Cell, CellB is a NR Cell. Cell A supports NSA

E-UTRAN Cell A Cell Id=01 TAC = 01 MCC-MNC = 460-00 EARFCN= f1 rootSequenceIndex = 0 Reference Signal EPRE= -85 dBm/15kHz upperLayerIndication-r15=true

NR Cell B Cell Id=02 TAC = 01 NR-ARFCN= f1 SS/PBCH SSS EPRE = -80 dBm/30kHz UL Modulation / Coding= 20 UL RB=50 mcs-Table in PUSCH-Config = qam64 UL TX Power=0dBm

[UE configuration]

The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in NSA mode.

[Initial conditions]

SS

E-UTRAN Cell A is not active NR Cell B is not active The test shall be performed under ideal radio conditions.

UE

UE is powered off

9.6.4.5 Test procedure

PREAMBLE

- 1. Activate E-UTRAN Cell A, NR Cell B.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to test conditions.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure with activation of the initial default EPS bearer on Cell A (see 36.508, 4.5.2).
- 5. The SS sends an ue-CapabilityRequest including the RAT type "eutra-nr".
- 6. Verify the UE sends UECapabilityInformation message including the RAT type "eutra-nr".

MAIN BODY

7. The SS sends an RRCConnectionReconfiguration message containing NR RRCReconfiguration

message to add Cell B as NR PS-Cell with SCG DRB and configure DL BWP and UL BWP with BWP-ID=1 and bandwidth=100MHz. Refer to Table 9.6.1.5-1 and Table 9.6.1.5-2 for BWP parameters

- 8. The UE sends an RRCConnectionReconfigurationComplete message containing NR RRCReconfigurationComplete message.
- 9. Setup uplink TCP session and verify that UE transmits data correctly by using BWP-ID = 1.
- 10. Start power consumption tester records the changes of current for 3 minutes
- 11. Stop power consumption measurement. Stop data transmission
- 12. SS releases RRC connection in both cell A and cell B. UE returns to Idle mode.
- 13. Wait for 2 minutes. The SS transmits a Paging message. UE is in LTE RRCConnected mode.
- 14. The SS sends an RRCConnectionReconfiguration message containing NR RRCReconfiguration message to add Cell B as NR PS-Cell with SCG DRB and configure DL BWP and UL BWP with BWP-ID=1 and bandwidth=20MHz. Refer to Table 9.6.1.5-1 and Table 9.6.1.5-3 for BWP parameters
- 15. Setup uplink TCP session and verify that UE downloads data correctly by using BWP-ID = 1.
- 16. Start power consumption tester records the changes of current for 3 minutes
- 17. Stop power consumption measurement. Stop data transmission

POSTAMBLE

- 18. The SS initiates a Detach procedure.
- 19. The SS initiates a RRC release procedure.
- 20. Deactivate E-UTRAN Cell A and NR Cell B.

9.6.4.6 Expected Result

Record the average current in step 8 and step 14.

Table 9.2.1.2.6-1: Test Results

Test Step	Average Current(mA)
Step 10: BWP=100MHz	
Step 16: BWP=20MHz	

10 Data Throughput

10.1 Downlink TCP Throughput

10.1.1 DL Throughput under static channel, DL 256QAM, DL4*4 MIMO

10.1.1.1 Test Purpose

To measure the UE application layer downlink performance while downloading TCP based data in Conducted, Static Channel, SA Option2, 100 MHz BW, Full Resource Allocation, 256QAM, DL 4*4 MIMO

10.1.1.2 Reference specification

3GPP TS 38.331, 3GPP TS 38.508, 3GPP TS 38.521-1

10.1.1.3 Applicability

This test applies to Type 2 UEs.

10.1.1.4 Test conditions

[SS configuration] NR-RAN Cell A Cell Id=01 TAC = 01 MCC = 460 MNC = 00 NR-ARFCN= f1 rootSequenceIndex = 0 DL Modulation / Coding = 27 RB Allocation UL= Full RB Allocation DL = Full simultaneousAckNackAndCQI = TRUE enable4x4MIMO = TRUE enable256QAM = TRUE CPConfig = UL: Normal CP/DL: Normal CP subcarrierSpacing=30kHz DI/UL switch period=5ms

[Common conditions]

Common conditions include a set of test points the UE needs to be tested in and the common test parameters for each transmission mode.

Table 10.1.1.4-1: Test Points Configuration			
Test Point	Propagation Correlation		
	Conditions	Matrices	
NR-1	Static	N/A	

Test Point	Propagation Conditions	Correlation Matrices
NR-1	Static	N/A

Parameter		Unit	Value
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-3
allocation	$ ho_{\scriptscriptstyle B}$	dB	-3(Note 1)
N_{oc} at antenna port		dBm/30kHz	-98
Reporting mode			PUCCH 1-0
Note 1: $P_B = 1$			

Table 10.1.1.4-2: T	Test Parameters for Testing

Test Point	Test band	NR Frame Structure	Specail Frame
1	n41	DD DD DD DS UU	DDDDDGGGGUUUU
2	n79	DSUUU DSUUU	DDDDDDDDGGUU
3	n79	DDDSU DDSUU	DDDDDDDDGGUU

Each test point should be tested as an independent test case

[UE configuration]

The test USIM shall be inserted.

The UE is in AUTOMATIC network selection mode.

[Initial conditions]

SS

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2 of TS 38.521-1.

Test Environment: Normal, as defined in TS 38.508-1 clause 4.1.

Frequencies to be tested: Mid Range, as defined in TS 38.508-1.

- 1. Connect the SS to the UE antenna connectors as shown in TS 36.508-1 Annex A, Figure A.3.2.1.5 for antenna configuration 4x4.
- 2. Connect an application server to the IP output of the SS configured with a FTP server.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.1 in TS 38.521-1 and uplink signals according to Annex G.1 and G.3.2 in TS 38.521-1.
- 4. Propagation conditions are set according to Annex B.0 in TS 38.521-1.

UE

UE is powered off

10.1.1.5 Test procedure

PREAMBLE

- 1. SS Activates NR-RAN Cell A configures the corresponding Master Information Block and System Information Block broadcast.
- 2. SS transmits PDSCH via PDCCH DCI format 1_0 for C_RNTI to transmit the DL data using the fixed transport format and transport block size.
- 3. Set the parameters of the propagation condition, the correlation matrix, antenna configuration according to Table 10.1.1.4-1 & Table 10.1.1.4-2.

MAIN BODY

- 4. The UE is powered ON.
- 5. UE performs a Registration procedure on NR-RAN Cell A to register for PS services. The UE establishes the default MCG bearer during the registration according to TS 38.508 subclause 4.5.2.
- 6. The SS transmits an RRC Connection Reconfiguration.
- 7. UE transmit an RRC Connection Reconfiguration Complete message to SS.

- 8. Using the FTP client, begin FTP download from the application server for [90] seconds and record Throughput result.
- 9. Repeat step 8 for one more iteration.
- 10. Calculate the average throughput at the application layer on the downlink channel during the file transfer over all iterations.
- 11. Switch Off UE, UE initiates a Detach procedure.

POSTAMBLE

12. Deactivate Cell.

	Message Sequence			Verdict	
Step	U-S	Layer	Message	Specific Contents	
	÷	RRC	The SS Activates NR-RAN Cell A configures the		
1			corresponding Master Information Block and		
			System Information Block broadcast		
2	SS		SS transmits PDSCH via PDCCH DCI format 1-0		
			for C_RNTI		
	SS		Set the parameters of the bandwidth,		
3			propagation condition, correlation matrix,		
5			Special subframe configuration and antenna		
			configuration		
			Cell Power is set		
4	UE		Switch On UE AT Command		
5	\leftrightarrow	NAS	UE performs Registration procedure on		PASS
J		RRC	NR-RAN Cell A		
6	÷	← RRC SS sends RRC Connection Reconfiguration			
0			message		
7	\rightarrow	RRC	The UE transmits RRC Connection		PASS
,			Reconfiguration Complete message		
8			Using FTP Client begin FTP Download		PASS
9			Repeat Step 8		
10	SS		Calculate Average Throughput		PASS
11			Switch Off UE AT Command		
12	SS		Deactivate Cell A		

Table 10.1.1.5-1: Message Sequence

10.1.1.6 Expected Result

1. Calculate and record the average throughput on TCP layer.

2. Count and record the overall number of ACK and NACK/DTX on the PUSCH/PUCCH during the test interval.

3. The average downlink throughput at the application layer shall meet or exceed the value in

following table.

Table	101161.	Expected Result	
lable	10.1.1.0-1.	Expected Result	

Test Point	Test band	Expected DL TCP Throughput
1	n41	[1.53 Gbps]
2	n79	[0.78 Gbps]
3	n79	[TBD]

10.1.2 DL Throughput under fading channel, DL 256QAM, DL4*4 MIMO

10.1.2.1 Test Purpose

To measure the UE application layer downlink performance while downloading TCP based data in Conducted, Fading Channel, SA Option2, 100 MHz BW, Full Resource Allocation,256QAM, DL 4*4 MIMO

10.1.2.2 Reference specification

3GPP TS 38.331, 3GPP TS 38.508, 3GPP TS 38.521-1

10.1.2.3 Applicability

This test applies to Type 2 UEs.

10.1.2.4 Test conditions

[SS configuration] NR-RAN Cell A Cell Id=01 TAC = 01 MCC = 460 MNC = 00 NR-ARFCN= f1 rootSequenceIndex = 0 DL Modulation / Coding = 27 RB Allocation UL= Full RB Allocation DL = Full simultaneousAckNackAndCQI = TRUE enable4x4MIMO = TRUE enable256QAM = TRUE CPConfig = UL: Normal CP/DL: Normal CP subcarrierSpacing=30kHz DI/UL switch period=5ms

[Common conditions]

Common conditions include a set of test points the UE needs to be tested in and the common test parameters for each transmission mode.

Test Point	Propagation	Correlation
	Conditions	Matrices
NR-1	Fading Profile : Low	
	TDLA30	
NR-2	Fading Profile : Low	
	TDLB100	
NR-3	Fading Profile :	Low
	TDLC300	

Table 10.1.2.4-1: Test Points Configuration

Table 10.1.2.4-2: Test Parameters for Testing

Parameter		Unit	Value
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-3
allocation	$ ho_{\scriptscriptstyle B}$	dB	-3(Note 1)
$N_{\scriptscriptstyle oc}$ at antenna port		dBm/30kHz	-98
Reporting mode			PUCCH 1-0
Note 1: $P_{B} = 1$			

[UE configuration]

The test USIM shall be inserted.

The UE is in AUTOMATIC network selection mode.

[Initial conditions]

SS

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2 of TS 38.521-1.

Test Environment: Normal, as defined in TS 38.508-1 clause 4.1.

Frequencies to be tested: Mid Range, as defined in TS 38.508-1.

- 1. Connect the SS, the faders and AWGN noise sources to the UE antenna connectors as shown in TS 38.508-1 Annex A, Figure A.3.2.1.5 for antenna configuration 4x4.
- 2. Connect an application server to the IP output of the SS configured with a FTP server.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.1 in TS 38.521-1 and uplink signals according to Annex G.1 and G.3.2 in TS 38.521-1.
- 4. Propagation conditions are set according to Annex B.0 in TS 38.521-1.

UE

UE is powered off

10.1.2.5 Test procedure

PREAMBLE

- 1. SS Activates NR-RAN Cell A configures the corresponding Master Information Block and System Information Block broadcast.
- 2. SS transmits PDSCH via PDCCH DCI format 1_0 for C_RNTI to transmit the DL data using the fixed transport format and transport block size.
- 3. Set the parameters of the propagation condition, the correlation matrix, antenna configuration according to Table 10.1.2.4-1 & Table 10.1.2.4-2.

MAIN BODY

- 4. The UE is powered ON.
- 5. UE performs a Registration procedure on NR-RAN Cell A to register for PS services. The UE establishes the default MCG bearer during the registration according to TS 38.508 subclause 4.5.2.
- 6. The SS transmits an RRC Connection Reconfiguration.
- 7. UE transmit an RRC Connection Reconfiguration Complete message to SS.
- 8. Using the FTP client, begin FTP download from the application server for [90] seconds and record Throughput result.
- 9. Repeat step 8 for one more iteration.
- 10. Calculate the average throughput at the application layer on the downlink channel during the file transfer over all iterations.
- 11. Switch Off UE, UE initiates a Detach procedure.

POSTAMBLE

12. Deactivate Cell.

		Message Sequence			
Step	U-S	Layer	Message Speci Conte		
	←	RRC	The SS Activates NR-RAN Cell A configures the		
1			corresponding Master Information Block and		
			System Information Block broadcast		
2	SS SS transmits PDSCH via PDCCH DCI format 1-0				
			for C_RNTI		
	SS		Set the parameters of the bandwidth,		
3			propagation condition, correlation matrix,		
5			Special subframe configuration and antenna		
			configuration		
			Cell Power is set		
4	UE		Switch On UE	AT Command	
-	\leftrightarrow	NAS	UE performs Registration procedure on		PASS
5		RRC	NR-RAN Cell A		
C	÷	RRC	SS sends RRC Connection Reconfiguration		
6			message		

Table 10.1.2.5-1: Message Sequence

7	\rightarrow	RRC	The UE transmits RRC Connection	PASS
/			Reconfiguration Complete message	
8			Using FTP Client begin FTP Download	
9			Repeat Step 8	
10	SS		Calculate Average Throughput	
11			Switch Off UE AT Command	
12	SS		Deactivate Cell A	

10.1.2.6 Expected Result

1. Calculate and record the average throughput.

2. Count and record the overall number of ACK and NACK/DTX on the PUSCH/PUCCH during the test interval.

3. The average downlink throughput at the application layer shall meet or exceed the value in following table.

Test Point	Expected DL Result [Mbit/s]
NR-1	FFS
NR-2	FFS
NR-3	FFS

Table 10.1.2.6-1: Expected Result

10.1.3 DL Throughput under static channel, DL 256QAM, DL2*2 MIMO

10.1.3.1 Test Purpose

To measure the UE application layer downlink performance while downloading TCP based data in Conducted, Static Channel, SA Option2, Full Resource Allocation,256QAM, DL 2*2 MIMO

10.1.3.2 Reference specification

3GPP TS 38.331, 3GPP TS 38.508, 3GPP TS 38.521-1

10.1.3.3 Applicability

This test applies to Type 2 UEs.

10.1.3.4 Test conditions

[SS configuration] NR-RAN Cell A Cell Id=01 TAC = 01 MCC = 460 MNC = 00 rootSequenceIndex = 0 DL Modulation / Coding = 27 RB Allocation UL= Full

RB Allocation DL = Full simultaneousAckNackAndCQI = TRUE enableDL2x2MIMO = TRUE enableDL256QAM = TRUE CPConfig = UL: Normal CP/DL: Normal CP

[Common conditions]

Common conditions include a set of test points the UE needs to be tested in and the common test parameters for each transmission mode.

Test Point	Propagation Conditions	Correlation Matrices
NR-1	Static	N/A

Table 10.1.3.4-1: Test Points Configuration

Table 10.1.3.4-3	Test band	configuration
------------------	-----------	---------------

Test Point	Test band	NR Frame Structure	Specail Frame	Test Frequency
1	n28	/	/	f1
2	n28	/	/	f2
Noto				

Note:

1. Each test point should be tested as an independent test case.

2. Check section 4.1.2.1 for details of test frequency

[UE configuration]

The test USIM shall be inserted.

The UE is in AUTOMATIC network selection mode.

[Initial conditions]

SS

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2 of TS 38.521-1.

Test Environment: Normal, as defined in TS 38.508-1 clause 4.1.

Frequencies to be tested: Mid Range, as defined in TS 38.508-1.

- 1. Connect the SS to the UE antenna connectors as shown in TS 36.508-1 Annex A, Figure A.3.2.1.5 for antenna configuration 2x2.
- 2. Connect an application server to the IP output of the SS configured with a FTP server.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.1 in TS 38.521-1 and uplink signals according to Annex G.1 and G.3.2 in TS 38.521-1.
- 4. Propagation conditions are set according to Annex B.0 in TS 38.521-1.

UE

UE is powered off

10.1.3.5 Test procedure

PREAMBLE

- 1. SS Activates NR-RAN Cell A configures the corresponding Master Information Block and System Information Block broadcast.
- 2. SS transmits PDSCH via PDCCH DCI format 1_0 for C_RNTI to transmit the DL data using the fixed transport format and transport block size.
- 3. Set the parameters of the propagation condition, the correlation matrix, antenna configuration according to Table 10.1.3.4-1 & Table 10.1.3.4-2.

MAIN BODY

- 4. The UE is powered ON.
- 5. UE performs a Registration procedure on NR-RAN Cell A to register for PS services. The UE establishes the default MCG bearer during the registration according to TS 38.508 subclause 4.5.2.
- 6. The SS transmits an RRC Connection Reconfiguration.
- 7. UE transmit an RRC Connection Reconfiguration Complete message to SS.
- 8. Using the FTP client, begin FTP download from the application server for [90] seconds and record Throughput result.
- 9. Repeat step 8 for one more iteration.
- 10. Calculate the average throughput at the application layer on the downlink channel during the file transfer over all iterations.
- 11. Switch Off UE, UE initiates a Detach procedure.

POSTAMBLE

12. Deactivate Cell.

	Message Sequence				Verdict
Step	U-S	Layer	Message	Specific Contents	
	÷	RRC	The SS Activates NR-RAN Cell A configures the		
1			corresponding Master Information Block and		
			System Information Block broadcast		
2	SS		SS transmits PDSCH via PDCCH DCI format 1-0		
			for C_RNTI		
	SS		Set the parameters of the bandwidth,		
2			propagation condition, correlation matrix,		
3	3		Special subframe configuration and antenna		
			configuration		
			Cell Power is set		
4	UE		Switch On UE	AT Command	

Table 10.1.3.5-1: Message Sequence

GTI 5G Function and Performance Test Specification v4.2 – September 2021

_	$\leftarrow \rightarrow$ NAS		UE performs Registration procedure on		PASS
5		RRC	NR-RAN Cell A		
6	÷	RRC	SS sends RRC Connection Reconfiguration		
0			message		
7	\rightarrow	RRC	The UE transmits RRC Connection		PASS
/			Reconfiguration Complete message		
8			Using FTP Client begin FTP Download		PASS
9			Repeat Step 8		
10	SS		Calculate Average Throughput		PASS
11			Switch Off UE	AT Command	
12	SS		Deactivate Cell A		

10.1.3.6 Expected Result

1. Calculate and record the average throughput on TCP layer.

2. Count and record the overall number of ACK and NACK/DTX on the PUSCH/PUCCH during the test interval.

3. The average downlink throughput at the application layer shall meet or exceed the value in following table.

Table	10.1.3.6-1:	Expected Re	esult
-------	-------------	-------------	-------

Test Point	Test band	Expected DL TCP Throughput
1	n28	[TBD]
2	n28	[TBD]

10.2 Uplink TCP Throughput

10.2.1 UL Throughput under static channel, UL 64QAM, UL2*2 MIMO

10.2.1.1 Test Purpose

To measure the UE application layer uplink performance while uploading TCP based data in Conducted, Static Channel, SA Option2, 100 MHz BW, Full Resource Allocation, UL 64QAM, UL 2*2 MIMO

10.2.1.2 Reference specification

3GPP TS 38.331, 3GPP TS 38.508, 3GPP TS 38.521-1

10.2.1.3 Applicability

This test applies to Type 2 UEs.

10.2.1.4 Test conditions

[SS configuration] NR-RAN Cell A

Cell Id=01 TAC = 01 MCC = 460 MNC = 00 NR-ARFCN= f1 rootSequenceIndex = 0 UL Modulation / Coding = 28 RB Allocation UL= Full RB Allocation DL = Full simultaneousAckNackAndCQI = TRUE enableUL2x2MIMO = TRUE enableUL64QAM = TRUE CPConfig = UL: Normal CP/DL: Normal CP subcarrierSpacing=30kHz DI/UL switch period=5ms

[Common conditions]

Common conditions include a set of test points the UE needs to be tested in and the common test parameters for each transmission mode.

Idi	Table 10.2.1.4-1. Test Points Computation			
Test Point	Propagation	Correlation		
	Conditions	Matrices		
NR-1	Static	N/A		

Table 10.2.1.4-1: Test Points Configuration

Parameter		Unit	Value	
Downlink power ρ_A		dB	-3	
allocation	$ ho_{\scriptscriptstyle B}$	dB	-3(Note 1)	
$N_{_{oc}}$ at antenna port		dBm/30kHz	-98	
Reporting mode			PUCCH 1-0	
Note 1: $P_B = 1$				

Test Point Test band NR Frame Structure Specail Frame		Specail Frame	
1	n41	DD DD DD DS UU	DDDDDGGGGUUUU
2	n79	DSUUU DSUUU	DDDDDDDDGGUU
3	n79	DDDSU DDSUU	DDDDDDDDGGUU

Each test point should be tested as an independent test case.

[UE configuration]

The test USIM shall be inserted.

The UE is in AUTOMATIC network selection mode.

[Initial conditions]

SS

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PUSCH and PUCCH before measurement are specified in Annex G.2 of TS 38.521-1.

Test Environment: Normal, as defined in TS 38.508-1 clause 4.1.

Frequencies to be tested: Mid Range, as defined in TS 38.508-1.

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 Annex A, Figure A.3.1.1.2 for NR UL MIMO.
- 2. Connect an application server to the IP output of the SS configured with a FTP server.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.1 in TS 38.521-1 and uplink signals according to Annex G.1 and G.3.2 in TS 38.521-1.
- 4. Propagation conditions are set according to Annex B.0 in TS 38.521-1.

UE

UE is powered off

10.2.1.5 Test procedure

PREAMBLE

- 1. SS Activates NR-RAN Cell A configures the corresponding Master Information Block and System Information Block broadcast.
- 2. SS transmits PUSCH via PUCCH DCI format 0_0 for C_RNTI to transmit the DL data using the fixed transport format and transport block size.
- 3. Set the parameters of the propagation condition, the correlation matrix, antenna configuration according to Table 10.2.1.4-1 & Table 10.2.1.4-2.

MAIN BODY

- 4. The UE is powered ON.
- 5. UE performs a Registration procedure on NR-RAN Cell A to register for PS services. The UE establishes the default MCG bearer during the registration according to TS 38.508 subclause 4.5.2.
- 6. The SS transmits an RRC Connection Reconfiguration.
- 7. UE transmit an RRC Connection Reconfiguration Complete message to SS.
- 8. Using the TCPclient, begin TCP upload from the application server for [90] seconds and record Throughput result.
- 9. Repeat step 8 for one more iteration.
- 10. Calculate the average throughput at the application layer on the uplink channel during the file transfer over all iterations.
- 11. Switch Off UE, UE initiates a Detach procedure.

POSTAMBLE

12. Deactivate Cell.

		Message Sequence			Verdict
Step	U-S	Layer	Message	Specific Contents	
	←	RRC	The SS Activates NR-RAN Cell A configures the		
1			corresponding Master Information Block and		
			System Information Block broadcast		
2	SS		SS transmits PUSCH via PUCCH DCI format 0-0		
			for C_RNTI		
	SS		Set the parameters of the bandwidth,		
3			propagation condition, correlation matrix,		
5			Special subframe configuration and antenna		
			configuration		
			Cell Power is set		
4	UE		Switch On UE	AT Command	
5	\leftrightarrow	NAS	UE performs Registration procedure on		PASS
ſ		RRC	NR-RAN Cell A		
6	÷	RRC	SS sends RRC Connection Reconfiguration		
0			message		
7	\rightarrow	RRC	The UE transmits RRC Connection		PASS
/			Reconfiguration Complete message		
8			Using TCP Client begin TCP Upload		PASS
9			Repeat Step 8		
10	SS		Calculate Average Throughput on Uplink		PASS
11			Switch Off UE	AT Command	
12	SS		Deactivate Cell A		

Table 10.2.1.5-1: Message Sequence

10.2.1.6 Expected Result

- 1. Calculate and record the average TCP throughput.
- 2. Count and record the overall number of ACK and NACK/DTX on the PUSCH/PUCCH during the test interval.
- 3. The average uplink throughput at the application layer shall meet or exceed the value in following table.

Table 10.2.1.6-1: expected result

Test Point	Test band	Expected DL TCP Throughput
1	n41	[188 Mbps]
2	n79	[571 Mbps]
3	n79	[TBD]

10.2.2 UL Throughput under static channel, UL 256QAM, Single TX, HPUE

10.2.2.1 Test Purpose

To measure the UE application layer uplink performance while uploading TCP based data in Conducted, Static Channel, SA Option2, Full Resource Allocation, UL 256QAM, Single TX, HPUE

10.2.2.2 Reference specification

3GPP TS 38.331, 3GPP TS 38.508, 3GPP TS 38.521-1

10.2.2.3 Applicability

This test applies to Type 2 UEs.

10.2.2.4 Test conditions

```
[SS configuration]
NR-RAN Cell A
Cell Id=01 TAC = 01
MCC = 460 MNC = 00
rootSequenceIndex = 0
UL Modulation / Coding = 27
RB Allocation UL= Full
RB Allocation DL = Full
simultaneousAckNackAndCQI = TRUE
enableUL256QAM = TRUE
CPConfig = UL: Normal CP/DL: Normal CP
DI/UL switch period=5ms
```

[Common conditions]

Common conditions include a set of test points the UE needs to be tested in and the common test parameters for each transmission mode.

Test Point	Propagation	Propagation Correlation		
	Conditions	Matrices		
NR-1	Static	N/A		

Table 10.2.2.4-1: Test Points Configuration

Parameter		Unit	Value
Downlink power ρ_A		dB	-3
allocation	$ ho_{\scriptscriptstyle B}$	dB	-3(Note 1)

$N_{\scriptscriptstyle oc}$ at antenna port	dBm/30kHz	-98
Reporting mode		PUCCH 1-0
Note 1: $P_B = 1$		

Table 10.2.2.4-3: Test band configuration

Test Point	Test band	NR Frame Structure	Specail Frame	Test Frequency
1	n41	DD DD DD DS UU	DDDDDDGGGGUUUU	f1
2	n79	DSUUU DSUUU	DDDDDDDDDGGUU	f1
3	n79	DDDSU DDSUU	DDDDDDDDDGGUU	f1
4	n28	/	/	f1
5	n28	/	/	f2
Note:				

1. Each test point should be tested as an independent test case.

2. Check section 4.1.2.1 for details of test frequency.

[UE configuration]

The test USIM shall be inserted.

The UE is in AUTOMATIC network selection mode.

[Initial conditions]

SS

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PUSCH and PUCCH before measurement are specified in Annex G.2 of TS 38.521-1.

Test Environment: Normal, as defined in TS 38.508-1 clause 4.1.

Frequencies to be tested: Mid Range, as defined in TS 38.508-1.

- 1. Connect the SS to the UE antenna connectors as shown in TS 36.508-1 Annex A, Figure A.3.1.1.1 for basic single cell.
- 2. Connect an application server to the IP output of the SS configured with a FTP server.
- Downlink signals are initially set up according to Annex CO, C.1 and Annex C.3.1 in TS 3. 38.521-1 and uplink signals according to Annex G.1 and G.3.2 in TS 38.521-1.
- Propagation conditions are set according to Annex B.0 in TS 38.521-1. 4.

UE

UE is powered off

10.2.2.5 Test procedure

PREAMBLE

- 1. SS Activates NR-RAN Cell A configures the corresponding Master Information Block and System Information Block broadcast.
- 2. SS transmits PUSCH via PUCCH DCI format 0_0 for C_RNTI to transmit the UL data using the

fixed transport format and transport block size.

3. Set the parameters of the propagation condition, the correlation matrix, antenna configuration according to Table 10.2.2.4-1 & Table 10.2.2.4-2.

MAIN BODY

- 4. The UE is powered ON.
- 5. UE performs a Registration procedure on NR-RAN Cell A to register for PS services. The UE establishes the default MCG bearer during the registration according to TS 38.508 subclause 4.5.2.
- 6. The SS transmits an RRC Connection Reconfiguration.
- 7. UE transmit an RRC Connection Reconfiguration Complete message to SS.
- 8. Using the TCP client, begin TCP upload from the application server for [90] seconds and record Throughput result.
- 9. Repeat step 8 for one more iteration.
- 10. Calculate the average throughput at the application layer on the uplink channel during the file transfer over all iterations.
- 11. Switch Off UE, UE initiates a Detach procedure.

POSTAMBLE

12. Deactivate Cell.

	Message Sequence				Verdict
Step	U-S	Layer	Message	Specific Contents	
1	÷	RRC	The SS Activates NR-RAN Cell A configures the corresponding Master Information Block and System Information Block broadcast		
2	SS		SS transmits PUSCH via PUCCH DCI format 0-0 for C_RNTI		
3	SS		Set the parameters of the bandwidth, propagation condition, correlation matrix, Special subframe configuration and antenna configuration		
			Cell Power is set		
4	UE		Switch On UE	AT Command	
5	\leftrightarrow	NAS RRC	UE performs Registration procedure on NR-RAN Cell A		PASS
6	÷	RRC	SS sends RRC Connection Reconfiguration message		
7	÷	RRC	The UE transmits RRC Connection Reconfiguration Complete message		PASS
8			Using TCP Client begin TCP Upload		
9			Repeat Step 8		

Table 10.2.2.5-1: Message Sequence

10	SS	Calculate Average Throughput on Uplink		PASS
11		Switch Off UE	AT Command	
12	SS	Deactivate Cell A		

10.2.2.6 Expected Result

- 1. Calculate and record the average TCP throughput.
- 2. Count and record the overall number of ACK and NACK/DTX on the PUSCH/PUCCH during the test interval.
- 3. The average uplink throughput at the application layer shall meet or exceed the value in following table.

Test Point	Test band	Expected UL TCP Throughput
1	n41	[125 Mbps]
2	n79	[380 Mbps]
3	n79	[TBD]
4	n28	[TBD]
5	n28	[TBD]

Table 10.2.2.6-1: expected result

10.2.3 UL Throughput under static channel, UL 256QAM, UL2*2 MIMO

10.2.3.1 Test Purpose

To measure the UE application layer uplink performance while uploading TCP based data in Conducted, Static Channel, SA Option2, 100 MHz BW, Full Resource Allocation, UL 256QAM, UL2*2 MIMO

10.2.3.2 Reference specification

3GPP TS 38.331, 3GPP TS 38.508, 3GPP TS 38.521-1

10.2.3.3 Applicability

This test applies to Type 2 UEs.

10.2.3.4 Test conditions

[SS configuration] NR-RAN Cell A Cell Id=01 TAC = 01 MCC = FFS MNC = FFS NR-ARFCN= f1 rootSequenceIndex = 0 UL Modulation / Coding = 27

RB Allocation UL= Full RB Allocation DL = Full simultaneousAckNackAndCQI = TRUE enableUL256QAM = TRUE CPConfig = UL: Normal CP/DL: Normal CP subcarrierSpacing=30kHz DI/UL switch period=5ms

[Common conditions]

Common conditions include a set of test points the UE needs to be tested in and the common test parameters for each transmission mode.

Test Point	Propagation Conditions	Correlation Matrices
NR-1	Static	N/A

Table 10.2.3.4-1: Test Points Configuration

Table 10.2.3.4-2: Test Parameters for Testing	2
	2

Parameter		Unit	Value
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-3
allocation	$ ho_{\scriptscriptstyle B}$	dB	-3(Note 1)
$N_{\scriptscriptstyle oc}$ at antenna port		dBm/30kHz	-98
Reporting mode			PUCCH 1-0
Reporting mode Note 1: $P_B = 1$			PUCCH 1-0

Test Points	Test band	NR Frame Structure	Specail Frame
1	n41	DD DD DD DS UU	DDDDDGGGGUUUU
2	n79	DSUUU DSUUU	DDDDDDDDGGUU
3	n79	DDDSU DDSUU	DDDDDDDDGGUU

Each test point should be tested as an independent test case.

[UE configuration]

The test USIM shall be inserted.

The UE is in AUTOMATIC network selection mode.

[Initial conditions]

SS

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PUSCH and PUCCH before measurement are specified in Annex G.2 of TS

38.521-1.

Test Environment: Normal, as defined in TS 38.508-1 clause 4.1.

Frequencies to be tested: Mid Range, as defined in TS 38.508-1.

- Connect the SS to the UE antenna connectors as shown in TS 38.508-1 Annex A, Figure A.3.1.1.2 for NR UL MIMO.
- 2. Connect an application server to the IP output of the SS configured with a FTP server.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.1 in TS 38.521-1 and uplink signals according to Annex G.1 and G.3.2 in TS 38.521-1.
- 4. Propagation conditions are set according to Annex B.0 in TS 38.521-1.

UE

UE is powered off

10.2.3.5 Test procedure

PREAMBLE

- 1. SS Activates NR-RAN Cell A configures the corresponding Master Information Block and System Information Block broadcast.
- 2. SS transmits PUSCH via PUCCH DCI format 0_0 for C_RNTI to transmit the UL data using the fixed transport format and transport block size.
- 3. Set the parameters of the propagation condition, the correlation matrix, antenna configuration according to Table 10.2.3.4-1 & Table 10.2.3.4-2.

MAIN BODY

- 4. The UE is powered ON.
- 5. UE performs a Registration procedure on NR-RAN Cell A to register for PS services. The UE establishes the default MCG bearer during the registration according to TS 38.508 subclause 4.5.2.
- 6. The SS transmits an RRC Connection Reconfiguration.
- 7. UE transmit an RRC Connection Reconfiguration Complete message to SS.
- 8. Using the TCP client, begin TCP upload from the application server for [90] seconds and record Throughput result.
- 9. Repeat step 8 for one more iteration.
- 10. Calculate the average throughput at the application layer on the uplink channel during the file transfer over all iterations.
- 11. Switch Off UE, UE initiates a Detach procedure.

POSTAMBLE

12. Deactivate Cell.

Table 10.2.3.5-1: Message Sequence					
			Message Sequence		Verdict
Step		Lavor	Massaga	Specific	
	U-S	Layer	Message	Contents	

Table 10.2.3.5-1: Message Sequence

	(RRC	The SS Activates NR-RAN Cell A configures		
1		_	the corresponding Master Information Block		
			and System Information Block broadcast		
2	SS		SS transmits PUSCH via PUCCH DCI format		
			0-0 for C_RNTI		
	SS		Set the parameters of the bandwidth,		
2			propagation condition, correlation matrix,		
3			Special subframe configuration and antenna		
			configuration		
			Cell Power is set		
4	UE		Switch On UE	AT Command	
5	\leftrightarrow	NAS	UE performs Registration procedure on		PASS
5		RRC	NR-RAN Cell A		
6	÷	RRC	SS sends RRC Connection Reconfiguration		
0			message		
7	\rightarrow	RRC	The UE transmits RRC Connection		PASS
/			Reconfiguration Complete message		
8			Using TCP Client begin TCP Upload		PASS
9			Repeat Step 8		
10	SS		Calculate Average Throughput on Uplink		PASS
11			Switch Off UE	AT Command	
12	SS		Deactivate Cell A		

10.2.3.6 Expected Result

- 1. Calculate and record the average TCP throughput.
- 2. Count and record the overall number of ACK and NACK/DTX on the PUSCH/PUCCH during the test interval.
- 3. The average downlink throughput at the application layer shall meet or exceed the value in following table.

Test Point	Test band	Expected DL TCP Throughput
1	n41	[250Mbps]
2	n79	[760 Mbps]
3	n79	[TBD]

Table 10.2.3.6-1: expected result

10.3 Bidirectional UDP Throughput

10.3.1 Bidirectional Throughput under static channel,256QAM, DL 4*4 and UL 2*2 ΜΙΜΟ

10.3.1.1 Test Purpose

To measure the UE application layer Bidirectional performance while downloading & uploading

simultaneously UDP based data in Conducted, Static Channel, SA Option2, 100 MHz BW, Full Resource Allocation, 256QAM, DL 4*4 and UL 2*2 MIMO

10.3.1.2 Reference specification

3GPP TS 38.331, 3GPP TS 38.508, 3GPP TS 38.521-1

10.3.1.3 Applicability

This test applies to Type 2 UEs.

10.3.1.4 Test conditions

[SS configuration] NR-RAN Cell A Cell Id=01 TAC = 01 MCC = 460 MNC = 00 NR-ARFCN= f1 rootSequenceIndex = 0 DL Modulation / Coding = 27 UL Modulation / Coding = 27 RB Allocation UL= Full RB Allocation DL = Full simultaneousAckNackAndCQI = TRUE enableDL4x4MIMO = TRUE enableDL256QAM = TRUE enableUL2x2MIMO = TRUE enableUL256QAM = TRUE CPConfig = UL: Normal CP/DL: Normal CP subcarrierSpacing=30kHz DI/UL switch period=5ms

[Common conditions]

Common conditions include a set of test points the UE needs to be tested in and the common test parameters for each transmission mode.

-			
Test Point	Propagation	Correlation	
	Conditions	Matrices	
NR-1	Static	N/A	

Parameter		Unit	Value
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-3
allocation	$ ho_{\scriptscriptstyle B}$	dB	-3(Note 1)

N_{oc} at antenna port	dBm/30kHz	-98
Reporting mode		PUCCH 1-0
Note 1: $P_B = 1$		

Table 10.3.1.4-3:	Test band	configuration
10010 10.0.1.4 0.	icst build	conngaration

Test Points	Test band	NR Frame Structure	Specail Frame
1	n41	DD DD DD DS UU	DDDDDGGGGUUUU

[UE configuration]

The test USIM shall be inserted.

The UE is in AUTOMATIC network selection mode.

[Initial conditions]

SS

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the

SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2 of TS Configurations of PUSCH and PUCCH before measurement are specified in Annex G.2 of TS 38.521-1.

38.521-1.

Test Environment: Normal, as defined in TS 38.508-1 clause 4.1.

Frequencies to be tested: Mid Range, as defined in TS 38.508-1.

- 1. Connect the SS to the UE antenna connectors as shown in TS 36.508-1 Annex A, Figure A.3.2.1.5 for antenna configuration 4x4.
- 2. Connect an application server to the IP output of the SS configured with a FTP server.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.1 in TS 38.521-1 and uplink signals according to Annex G.1 and G.3.2 in TS 38.521-1.
- 4. Propagation conditions are set according to Annex B.0 in TS 38.521-1.

UE

UE is powered off

10.3.1.5 Test procedure

PREAMBLE

- 1. SS Activates NR-RAN Cell A configures the corresponding Master Information Block and System Information Block broadcast.
- 2. SS transmits PDSCH via PDCCH DCI format 1_0 for C_RNTI to transmit the DL data using the fixed transport format and transport block size.
- 3. Set the parameters of the propagation condition, the correlation matrix, antenna configuration according to Table 10.3.1.4-1 & Table 10.3.1.4-2.

MAIN BODY

- 4. The UE is powered ON.
- 5. UE performs a Registration procedure on NR-RAN Cell A to register for PS services. The UE establishes the default MCG bearer during the registration according to TS 38.508 subclause 4.5.2.
- 6. The SS transmits an RRC Connection Reconfiguration.
- 7. UE transmit an RRC Connection Reconfiguration Complete message to SS.
- 8. Using the UDP client, begin UDP download and upload simultaneously from the application server for [90] seconds and record Throughput result.
- 9. Repeat step 8 for one more iteration.
- 10. Calculate the average throughput at the application layer on the downlink and uplink channel during the file transfer over all iterations.
- 11. Switch Off UE, UE initiates a Detach procedure.

POSTAMBLE

12. Deactivate Cell.

Ston	Message Sequence				Verdict
Step	U-S	Layer	Message	Specific Contents	
	←	RRC	The SS Activates NR-RAN Cell A configures		
1			the corresponding Master Information		
T			Block and System Information Block		
			broadcast		
2	SS		SS transmits PDSCH via PDCCH DCI format		
			1-0 for C_RNTI		
	SS		Set the parameters of the bandwidth,		
3			propagation condition, correlation		
J			matrix, Special subframe configuration		
			and antenna configuration		
4			Cell Power is set		
5	UE		Switch On UE	AT Command	
6	÷	NAS	UE performs Registration procedure on		PASS
0	\rightarrow	RRC	NR-RAN Cell A		
7	÷	RRC	SS sends RRC Connection Reconfiguration		
,			message		
8	\rightarrow	RRC	The UE transmits RRC Connection		PASS
0			Reconfiguration Complete message		
9			Using UDP Client begin UDP Download		PASS
9			and Upload simultaneously		
10			Repeat Step 9		
11	SS		Calculate Average Throughput		PASS
12			Switch Off UE	AT Command	

Table 10.3.1.5-1: Message Sequence

13	SS	Deactivate Cell A	

10.3.1.6 Expected Result

1. Calculate and record the average TCP throughput.

2. Count and record the overall number of ACK and NACK/DTX on the PUSCH/PUCCH during the test interval.

3. The average downlink throughput at the application layer shall meet or exceed the value in following table.

Table 10.3.1.6-1: expected result

Test Point	Band	Expected DL UDP Throughput	Expected UL UDP Throughput
1	n41	[1.53 Gbps]	[250 Mbps]

10.3.2 Bidirectional Throughput under fading channel,256QAM, DL 4*4 and UL 2*2 MIMO

10.3.2.1 Test Purpose

To measure the UE application layer Bidirectional performance while downloading & uploading simultaneously UDP based data in Conducted, Fading Channel, SA Option2, 100 MHz BW, Full Resource Allocation, 256QAM, DL 4*4 and UL 2*2 MIMO

10.3.2.2 Reference specification

3GPP TS 38.331, 3GPP TS 38.508, 3GPP TS 38.521-1

10.3.2.3 Applicability

This test applies to Type 2 UEs.

10.3.2.4 Test conditions

[SS configuration] NR-RAN Cell A Cell Id=01 TAC = 01 MCC = 460 MNC = 00 NR-ARFCN= f1 rootSequenceIndex = 0 DL Modulation / Coding = 27 UL Modulation / Coding = 27 RB Allocation UL= Full RB Allocation UL= Full simultaneousAckNackAndCQI = TRUE enableDL256QAM = TRUE enableUL2x2MIMO = TRUE

enableUL64QAM = TRUE

CPConfig = UL: Normal CP/DL: Normal CP

subcarrierSpacing=30kHz

DI/UL switch period=5ms

[Common conditions]

Common conditions include a set of test points the UE needs to be tested in and the common test parameters for each transmission mode.

Test Point	Propagation	Correlation
	Conditions	Matrices
NR-1	Fading Profile :	Low
	TDLA30	
NR-2	Fading Profile :	Low
	TDLB100	
NR-3	Fading Profile :	Low
	TDLC300	

Table 10.3.2.4-1: Test Points Configuration

Table 10.3.2.4-2: Test Parameters for Testing

Parameter		Unit	Value
Downlink power ρ_A		dB	-3
allocation	$ ho_{\scriptscriptstyle B}$	dB	-3(Note 1)
$N_{_{oc}}$ at antenna port		dBm/30kHz	-98
Reporting mode			PUCCH 1-0
Note 1: $P_B = 1$			

[UE configuration]

The test USIM shall be inserted.

The UE is in AUTOMATIC network selection mode.

[Initial conditions]

SS

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2 of TS 38.521-1.

Test Environment: Normal, as defined in TS 38.508-1 clause 4.1.

Frequencies to be tested: Mid Range, as defined in TS 38.508-1.

1. Connect the SS to the UE antenna connectors as shown in TS 36.508-1 Annex A, Figure A.3.2.1.5 for antenna configuration 4x4.

2. Connect an application server to the IP output of the SS configured with a FTP server.

3. Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.1 in TS 38.521-1 and uplink signals according to Annex G.1 and G.3.2 in TS 38.521-1.

4. Propagation conditions are set according to Annex B.0 in TS 38.521-1.

UE

UE is powered off

10.3.2.5 Test procedure

PREAMBLE

- 1. SS Activates NR-RAN Cell A configures the corresponding Master Information Block and System Information Block broadcast.
- 2. SS transmits PDSCH via PDCCH DCI format 1_0 for C_RNTI to transmit the DL data using the fixed transport format and transport block size.
- 3. Set the parameters of the propagation condition, the correlation matrix, antenna configuration according to Table 10.3.2.4-1 & Table 10.3.2.4-2.

MAIN BODY

- 4. The UE is powered ON.
- 5. UE performs a Registration procedure on NR-RAN Cell A to register for PS services. The UE establishes the default MCG bearer during the registration according to TS 38.508 subclause 4.5.2.
- 6. The SS transmits an RRC Connection Reconfiguration.
- 7. UE transmit an RRC Connection Reconfiguration Complete message to SS.
- 8. Using the UDP client, begin UDP download and upload simultaneously from the application server for [90] seconds and record Throughput result.
- 9. Repeat step 8 for one more iteration.
- 10. Calculate the average throughput at the application layer on the downlink and uplink channel during the file transfer over all iterations.
- 11. Switch Off UE, UE initiates a Detach procedure.

POSTAMBLE

12. Deactivate Cell.

	Message Sequence				
Step	U-S	Layer	Message	Specific Contents	
	←	RRC	The SS Activates NR-RAN Cell A configures the		
1			corresponding Master Information Block and		
			System Information Block broadcast		
2	SS		SS transmits PDSCH via PDCCH DCI format 1-0		
			for C_RNTI		

Table 10.3.2.5-1: Message Sequence

GTI 5G Function and Performance Test Specification v4.2 – September 2021

	SS		Set the parameters of the bandwidth,		
3			propagation condition, correlation matrix,		
5			Special subframe configuration and antenna		
			configuration		
4			Cell Power is set		
5	UE		Switch On UE	AT Command	
C	\leftrightarrow	NAS	UE performs Registration procedure on		PASS
6		RRC	NR-RAN Cell A		
7	÷	RRC	SS sends RRC Connection Reconfiguration		
/	/		message		
8	\rightarrow	RRC	The UE transmits RRC Connection		PASS
-			Reconfiguration Complete message		
9			Using UDP Client begin UDP Download and		PASS
5			Upload Simultaneously		
10			Repeat Step 9		
11	SS		Calculate Average Throughput		PASS
12			Switch Off UE	AT Command	
13	SS		Deactivate Cell A		

10.3.2.6 Expected Result

1. Calculate and record the average throughput.

2. Count and record the overall number of ACK and NACK/DTX on the PUSCH/PUCCH during the test interval.

3. The average downlink throughput at the application layer shall meet or exceed the value in following table.

Band	Test Point	Expected DL Throughput	Expected UL Throughput
n41	NR-1	FFS	FFS
n41	NR-2	FFS	FFS
n41	NR-3	FFS	FFS

10.3.3 Bidirectional Throughput under static channel,256QAM, DL 2*2 and UL Single TX

10.3.3.1 Test Purpose

To measure the UE application layer Bidirectional performance while downloading & uploading simultaneously UDP based data in Conducted, Static Channel, SA Option2, Full Resource Allocation, 256QAM, DL 2*2 and UL Single TX.

10.3.3.2 Reference specification

3GPP TS 38.331, 3GPP TS 38.508, 3GPP TS 38.521-1

10.3.3.3 Applicability

This test applies to Type 2 UEs.

10.3.3.4 Test conditions

[SS configuration] NR-RAN Cell A Cell Id=01 TAC = 01 MCC = 460 MNC = 00 rootSequenceIndex = 0 DL Modulation / Coding = 27 UL Modulation / Coding = 27 RB Allocation UL= Full RB Allocation DL = Full simultaneousAckNackAndCQI = TRUE enableDL2x2MIMO = TRUE enableDL256QAM = TRUE enableUL256QAM = TRUE

[Common conditions]

Common conditions include a set of test points the UE needs to be tested in and the common test parameters for each transmission mode.

Table 10.3.1.4-1: Test Points Configurat				
Test Point	Propagation	Correlation		
	Conditions	Matrices		
NR-1	Static	N/A		

Test Point	Test band	NR Frame Structure	Specail Frame	Frequency Range
1	n28	/	/	f1
2	n28	/	/	f2

Note:

1. Each test point should be tested as an independent test case.

2. Check section 4.1.2.1 for details of test frequency

[UE configuration]

The test USIM shall be inserted.

The UE is in AUTOMATIC network selection mode.

[Initial conditions]

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the

SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2 of TS

Configurations of PUSCH and PUCCH before measurement are specified in Annex G.2 of TS 38.521-1.

38.521-1.

Test Environment: Normal, as defined in TS 38.508-1 clause 4.1. Frequencies to be tested: Mid Range, as defined in TS 38.508-1.

- 1. Connect the SS to the UE antenna connectors as shown in TS 36.508-1 Annex A, Figure A.3.2.1.5 for antenna configuration 2x2.
- 2. Connect an application server to the IP output of the SS configured with a FTP server.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.1 in TS 38.521-1 and uplink signals according to Annex G.1 and G.3.2 in TS 38.521-1.
- 4. Propagation conditions are set according to Annex B.0 in TS 38.521-1.

UE

UE is powered off

10.3.3.5 Test procedure

PREAMBLE

- 1. SS Activates NR-RAN Cell A configures the corresponding Master Information Block and System Information Block broadcast.
- 2. SS transmits PDSCH via PDCCH DCI format 1_0 for C_RNTI to transmit the DL data using the fixed transport format and transport block size.
- 3. Set the parameters of the propagation condition, the correlation matrix, antenna configuration according to Table 10.3.1.4-1 & Table 10.3.1.4-2.

MAIN BODY

- 4. The UE is powered ON.
- 5. UE performs a Registration procedure on NR-RAN Cell A to register for PS services. The UE establishes the default MCG bearer during the registration according to TS 38.508 subclause 4.5.2.
- 6. The SS transmits an RRC Connection Reconfiguration.
- 7. UE transmit an RRC Connection Reconfiguration Complete message to SS.
- 8. Using the UDP client, begin UDP download and upload simultaneously from the application server for [90] seconds and record Throughput result.
- 9. Repeat step 8 for one more iteration.
- 10. Calculate the average throughput at the application layer on the downlink and uplink channel during the file transfer over all iterations.
- 11. Switch Off UE, UE initiates a Detach procedure.

POSTAMBLE

12. Deactivate Cell.

Step	Message Sequence				
	U-S Layer		Message	Specific Contents	
1	÷	RRC	The SS Activates NR-RAN Cell A configures the corresponding Master Information Block and System Information Block broadcast		
2	SS		SS transmits PDSCH via PDCCH DCI format 1-0 for C_RNTI		
3	SS		Set the parameters of the bandwidth, propagation condition, correlation matrix, Special subframe configuration and antenna configuration		
4			Cell Power is set		
5	UE		Switch On UE	AT Command	
6	\leftarrow	NAS RRC	UE performs Registration procedure on NR-RAN Cell A		PASS
7	÷	RRC	SS sends RRC Connection Reconfiguration message		
8	<i>></i>	RRC	The UE transmits RRC Connection Reconfiguration Complete message		PASS
9			Using UDP Client begin UDP Download		PASS
10			Repeat Step 9		
11	SS		Calculate Average Throughput		PASS
12			Switch Off UE	AT Command	
13	SS		Deactivate Cell A		

Table 10.3.1.5-1: Message Seque	lence
---------------------------------	-------

10.3.3.6 Expected Result

1. Calculate and record the average TCP throughput.

2. Count and record the overall number of ACK and NACK/DTX on the PUSCH/PUCCH during the test interval.

3. The average downlink throughput at the application layer shall meet or exceed the value in following table.

Table 10.3.1.6-1: expected result

Test Point	Band Expected DL UDP Throughput Expected UL		Expected UL UDP Throughput
1	n28	[TBD]	[TBD]
2	n28	[TBD]	[TBD]

10.4 Downlink TCP Throughput, NSA

10.4.1 DL Throughput under static channel, NSA

10.4.1.1 Test Purpose

To measure the UE application layer downlink performance while downloading TCP based data in Conducted, Static Channel, NSA Option3, 100 MHz BW, Full Resource Allocation, 256QAM, DL NR 4*4 MIMO + LTE 2*2 MIMO, data transmission on MCG and SCG simultaneously

10.4.1.2 Reference specification

3GPP TS 36.331, 3GPP TS 36.508, 3GPP TS 36.521-1, 3GPP TS 38.331, 3GPP TS 38.508, 3GPP TS 38.521-1

10.4.1.3 Applicability

This test applies to Type 1 and Type 3 devices as described in clause 4.2.

10.4.1.4 Test conditions

[SS configuration] E-UTRAN Cell A, NR-RAN Cell B

E-UTRAN Cell A, Cell Id=01 TAC = 01 MCC = 460 MNC = 00 EARFCN= f1 rootSequenceIndex = 0 DL Modulation / Coding = 27 RB Allocation UL= Full RB Allocation DL = Full simultaneousAckNackAndCQI = TRUE enable256QAM = TRUE CPConfig = UL: Normal CP/DL: Normal CP

NR-RAN Cell B, Cell Id=02 TAC = 01 NR-ARFCN= f1 rootSequenceIndex = 0 DL Modulation / Coding = 27 RB Allocation UL= Full RB Allocation DL = Full simultaneousAckNackAndCQI = TRUE enable4x4MIMO = TRUE enable256QAM = TRUE CPConfig = UL: Normal CP/DL: Normal CP

[Common conditions]

Common conditions include a set of test points the UE needs to be tested in and the common test parameters for each transmission mode.

Test Point	Propagation Conditions	Correlation Matrices
NSA-1	Static	N/A

Parameter		Unit	Value	
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-3	
allocation	$ ho_{\scriptscriptstyle B}$	dB	-3(Note 1)	
LTE N_{oc} at antenna port		dBm/15kHz	-98	
NR N_{oc} at antenna port		dBm/30kHz	-98	
Reporting mode			PUCCH 1-0	
Note 1: $P_B = 1$				

Table 10.4.1.4-2: Test Parameters for Testing

[UE configuration]

The test USIM shall be inserted.

The UE is in AUTOMATIC network selection mode.

[Initial conditions]

SS

.

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of LTE PDSCH and PDCCH before measurement are specified in Annex C.2 of TS 36.521-1.

Configurations of NR PDSCH and PDCCH before measurement are specified in Annex C.2 of TS 38.521-1.

Test Environment: Normal, as defined in TS 36.508 & TS 38.508-1 clause 4.1 for LTE & NR respectively.

- 1. Connect the LTE SS, the faders and AWGN noise sources to the UE antenna connectors as shown in TS 36.508 Annex A, Figure A.10 for antenna configuration 2x2.
- 2. Connect the NR SS, the faders and AWGN noise sources to the UE antenna connectors as shown in TS 36.508-1 Annex A, Figure A.3.2.1.5 for antenna configuration 4x4.
- 3. Connect an application server to the IP output of the SS configured with a FTP server.

- 4. LTE Downlink signals are initially set up according to Annex C.0, C.1 and Annex C.3.2 in TS 36.521-1 and uplink signals according to Annex H.1 and H.3.2 in TS 36.521-1.
- 5. NR Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.1 in TS 38.521-1 and uplink signals according to Annex G.1 and G.3.2 in TS 38.521-1.
- 6. LTE Propogation conditions are set according to Annex B.0 in TS 36.521-1.
- 7. NR Propagation conditions are set according to Annex B.0 in TS 38.521-1.

UE

UE is powered off

10.4.1.5 Test procedure

PREAMBLE

- 1. SS Activates E-UTRAN Cell A configures the corresponding Master Information Block and System Information Block broadcast.
- 2. SS transmits LTE PDSCH via PDCCH DCI format 2A for C_RNTI to transmit the DL data using the transport format and transport block size.
- Set the parameters of the bandwidth, the propagation condition, the correlation matrix, EN-DC Configuration, Special subframe configuration, antenna configuration according to Table 10.4.1.4-1, Table 10.4.1.4-2, as appropriate. Transmission mode is set to TM3.
- SNR is set according to Table 5.1.1.4-1. Here SNR = Cell_power / Noc, in which Cell_power(EPRE) is a constant of -68dBm/15kHz, following the definition of TS 36.508 & 38.508.

MAIN BODY

- 5. The UE is powered ON.
- 6. UE performs a Registration procedure on E-UTRAN Cell A to register for PS services. The UE establishes the default EPS bearer during the registration according to TS 36.508 subclause 4.5.2(steps 1-16).
- 7. SS Activates NR Cell B.
- 8. The SS transmits an RRC Connection Reconfiguration message containing information regarding NR Cell B and to establish MCG & SCG.
- 9. UE transmit an RRC Connection Reconfiguration Complete message to SS.
- 10. Using the FTP client, begin FTP download from the application server for [90] seconds and record Throughput result.
- 11. Repeat step 10 for one more iteration.
- 12. Calculate the average throughput at the application layer on the downlink channel during the file transfer over all iterations.
- 13. Switch Off UE, UE initiates a Detach procedure.

POSTAMBLE

14. Deactivate Cell A and Cell B.

Table 10.4.1.5-1: Message Sequence

Message Sequence	Verdict
------------------	---------

	U-S	Layer	Message	Specific Contents		
	÷	RRC	The SS Activates E-UTRAN Cell A			
1			configures the corresponding Master			
1			Information Block and System			
			Information Block broadcast			
2	SS		SS transmits PDSCH via PDCCH DCI format			
			2A for C_RNTI			
	SS		Set the parameters of the bandwidth,			
			propagation condition, correlation			
3			matrix, EN-DC Configuration, Special			
			subframe configuration and antenna			
			configuration			
4			Cell Power is set			
5	UE		Switch On UE	AT Command		
6	\leftrightarrow	NAS	UE performs Registration procedure on		PASS	
0		RRC	E-UTRAN Cell A			
7			The SS activates NR Cell B			
8	. ←	÷	RRC	SS sends RRC Connection Reconfiguration		
0			message			
9	\rightarrow	RRC	The UE transmits RRC Connection		PASS	
9			Reconfiguration Complete message			
10			Using FTP Client begin FTP Download		PASS	
11			Repeat Step 10			
12	SS		Calculate Average Throughput		PASS	
13			Switch Off UE	AT Command		
14	SS		Deactivate Cell A & Cell B			

10.4.1.6 Expected Result

- 1. Calculate and record the average downlink TCP throughput
- 2. Calculate and record the average downlink throughput in MAC layer in SCG cell and MCG cell respectively
- 3. Count and record the overall number of ACK and NACK/DTX on the PUSCH/PUCCH during the test interval.
- 4. The average downlink throughput at the application layer shall meet or exceed the value in following table.

Band	Expected DL TCP	Expected DL MAC	Expected DL MAC				
Combination	Combination Throughput Throughpu		Throughput in SCG				
B3+n41	[1.8 Gbps]	[100 Mbps]	[1.7 Gbps]				

Table 10.4.1.6-1: Expected Result for EN-DC FDD LTE Band + NR Band

10.4.2 DL Throughput under fading channel, NSA

10.4.2.1 Test Purpose

To measure the UE application layer downlink performance while downloading TCP based data in Conducted, fading Channel, NSA Option3, 100 MHz BW, Full Resource Allocation, dynamic scheduling based on channel condition, data transmission on MCG and SCG simultaneously

10.4.2.2 Reference specification

3GPP TS 36.331, 3GPP TS 36.508, 3GPP TS 36.521-1, 3GPP TS 38.331, 3GPP TS 38.508, 3GPP TS 38.521-1

10.4.2.3 Applicability

This test applies to Type 1 and Type 3 devices as described in clause 4.2.

10.4.2.4 Test conditions

[SS configuration] E-UTRAN Cell A, NR-RAN Cell B

E-UTRAN Cell A, Cell Id=01 TAC = 01 MCC = 460 MNC = 00 EARFCN= f1 rootSequenceIndex = 0 RB Allocation UL= Full RB Allocation DL = Full simultaneousAckNackAndCQI = TRUE

CPConfig = UL: Normal CP/DL: Normal CP

NR-RAN Cell B, Cell Id=02 TAC = 01 NR-ARFCN= f1 rootSequenceIndex = 0 RB Allocation UL= Full RB Allocation DL = Full simultaneousAckNackAndCQI = TRUE CPConfig = UL: Normal CP/DL: Normal CP

[Common conditions]

Common conditions include a set of test points the UE needs to be tested in and the common test parameters for each transmission mode.

Table 10.4.2.4-1: Test Points Configuration

		0
Test Point	Propagation	Correlation

	Conditions	Matrices
NSA-1	LTE Fading Profile :	Low
	EPA5 , NR Fading	
	Profile : TDLA30	
NSA-2	LTE Fading Profile :	Low
	EPA5 , NR Fading	
	Profile : TDLB100	
NSA-3	LTE Fading Profile :	Low
	EVA5 , NR Fading	
	Profile : TDLC300	

Table 10.4.2.4-2: Test Parameters for Testing

Parameter		Unit	Value
Downlink power	Downlink power ρ_A		-3
allocation	$ ho_{\scriptscriptstyle B}$	dB	-3(Note 1)
LTE $N_{_{oc}}$ at antenna po	rt	dBm/15kHz	-98
NR N_{oc} at antenna poi	t	dBm/30kHz	-98
Reporting mode			PUCCH 1-0
Note 1: $P_B = 1$			

[UE configuration]

The test USIM shall be inserted.

The UE is in AUTOMATIC network selection mode.

[Initial conditions]

SS

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of LTE PDSCH and PDCCH before measurement are specified in Annex C.2 of TS 36.521-1.

Configurations of NR PDSCH and PDCCH before measurement are specified in Annex C.2 of TS 38.521-1.

Test Environment: Normal, as defined in TS 36.508 & TS 38.508-1 clause 4.1 for LTE & NR respectively.

Frequencies to be tested: Mid Range, as defined in TS 36.508 & TS 38.508-1 for LTE & NR respectively.

1. Connect the LTE SS, the faders and AWGN noise sources to the UE antenna connectors as shown in TS 36.508 Annex A, Figure A.10 for antenna configuration 2x2.

- 2. Connect the NR SS, the faders and AWGN noise sources to the UE antenna connectors as shown in TS 38.508-1 Annex A, Figure A.3.2.1.5 for antenna configuration 4x4.
- 3. Connect an application server to the IP output of the SS configured with a FTP server.
- 4. LTE Downlink signals are initially set up according to Annex C.0, C.1 and Annex C.3.2 in TS 36.521-1 and uplink signals according to Annex H.1 and H.3.2 in TS 36.521-1.
- 5. NR Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.1 in TS 38.521-1 and uplink signals according to Annex G.1 and G.3.2 in TS 38.521-1.
- 6. LTE Propogation conditions are set according to Annex B.0 in TS 36.521-1.
- 7. NR Propagation conditions are set according to Annex B.0 in TS 38.521-1.

UE is powered off

10.4.2.5 Test procedure

PREAMBLE

- 1. SS Activates E-UTRAN Cell A configures the corresponding Master Information Block and System Information Block broadcast.
- 2. SS transmits LTE PDSCH via PDCCH DCI format 2A for C_RNTI to transmit the DL data using the transport format and transport block size.
- Set the parameters of the bandwidth, the propagation condition, the correlation matrix, EN-DC Configuration, Special subframe configuration, antenna configuration according to Table 10.4.2.4-1, Table 10.4.2.4-2, as appropriate. Transmission mode is set to TM3.
- SNR is set according to Table 10.4.1.4-1. Here SNR = Cell_power / Noc, in which Cell_power(EPRE) is a constant of -68dBm/15kHz, following the definition of TS 36.508 & 38.508.

MAIN BODY

- 5. The UE is powered ON.
- UE performs a Registration procedure on E-UTRAN Cell A to register for PS services. The UE establishes the default EPS bearer during the registration according to TS 36.508 subclause 4.5.2(steps 1-16).
- 7. SS Activates NR Cell B.
- 8. The SS transmits an RRC Connection Reconfiguration message containing information regarding NR Cell B and to establish MCG & SCG.
- 9. UE transmit an RRC Connection Reconfiguration Complete message to SS.
- 10. Using the FTP client, begin FTP download from the application server for [90] seconds and record Throughput result.
- 11. Repeat step 10 for one more iteration.
- 12. Calculate the average throughput at the application layer on the downlink channel during the file transfer over all iterations.
- 13. Switch Off UE, UE initiates a Detach procedure.

POSTAMBLE

14. Deactivate Cell A and Cell B.

	Message Sequence						
Step	U-S	Layer	Message	Specific Contents			
	÷	RRC	The SS Activates E-UTRAN Cell A configures				
1			the corresponding Master Information Block				
			and System Information Block broadcast				
2	SS		SS transmits PDSCH via PDCCH DCI format 2A				
			for C_RNTI				
	SS		Set the parameters of the bandwidth,				
3			propagation condition, correlation matrix,				
5			EN-DC Configuration, Special subframe				
			configuration and antenna configuration				
4			Cell Power is set				
5	UE		Switch On UE	AT Command			
6	\leftrightarrow	NAS	UE performs Registration procedure on		PASS		
0		RRC	E-UTRAN Cell A				
7			The SS activates NR Cell B				
8	÷	RRC	SS sends RRC Connection Reconfiguration message				
_	\rightarrow	RRC	The UE transmits RRC Connection		PASS		
9			Reconfiguration Complete message				
10			Using FTP Client begin FTP Download		PASS		
11			Repeat Step 10	Repeat Step 10			
12	SS		Calculate Average Throughput		PASS		
13			Switch Off UE	AT Command			
14	SS		Deactivate Cell A & Cell B				

10.4.2.6 Expected Result

- 1. Calculate and record the average downlink TCP throughput.
- 2. Calculate and record the average downlink throughput in MAC layer in SCG cell and MCG cell respectively
- 3. Count and record the overall number of ACK and NACK/DTX on the PUSCH/PUCCH during the test interval.
- 4. The average downlink throughput at the application layer shall meet or exceed the value in following table.

Band	Test Point	Expected DL TCP	Expected DL MAC	Expected DL MAC
Combination		Throughput	Throughput in MCG	Throughout in SCG
B3+n41	NSA-1	FFS	FFS	FFS

Table 10.4.2.6-1: Expected Result for EN-DC FDD LTE Band + NR Band

B3+n41	NSA-2	FFS	FFS	FFS
B3+n41	NSA-3	FFS	FFS	FFS

10.4.3 DL Throughput under static channel on SCG, DL 256QAM, NSA

10.4.3.1 Test Purpose

To measure the UE application layer downlink performance while downloading TCP based data in Conducted, Static Channel, NSA Option3x, 100 MHz BW, Full Resource Allocation, 256QAM, DL NR 4*4 MIMO, data transmission on SCG

10.4.3.2 Reference specification

3GPP TS 36.331, 3GPP TS 36.508, 3GPP TS 36.521-1, 3GPP TS 38.331, 3GPP TS 38.508, 3GPP TS 38.521-1

10.4.3.3 Applicability

This test applies to Type 1 and Type 3 devices as described in clause 4.2.

10.4.3.4 Test conditions

[SS configuration] E-UTRAN Cell A, NR-RAN Cell B E-UTRAN Cell A, Cell Id=01 TAC = 01 MCC = 460 MNC = 00 EARFCN= f1 rootSequenceIndex = 0 DL Modulation / Coding = 27 **RB Allocation UL= Full** RB Allocation DL = Full simultaneousAckNackAndCQI = TRUE enable256QAM = TRUE CPConfig = UL: Normal CP/DL: Normal CP NR-RAN Cell B, Cell Id=02 TAC = 01 NR-ARFCN= f1 rootSequenceIndex = 0 DL Modulation / Coding = 27 **RB Allocation UL= Full**

RB Allocation DL = Full

simultaneousAckNackAndCQI = TRUE

enable4x4MIMO = TRUE enable256QAM = TRUE CPConfig = UL: Normal CP/DL: Normal CP

[Common conditions]

Common conditions include a set of test points the UE needs to be tested in and the common test parameters for each transmission mode.

Table 10.4.3.4-1: Test Points Configuration					
Test Point	Propagation Conditions	Correlation Matrices			
NSA-1	Static	N/A			

Table 10.4.3.4-2: Test Parameters for Testing						
Parameter		Unit	Value			
Downlink power ρ_A		dB	-3			
allocation	$\rho_{\scriptscriptstyle R}$	dB	-3(Note 1)			

dBm/15kHz

dBm/30kHz

-98

-98

PUCCH 1-0

[UE configuration]

Reporting mode

Note 1:

LTE N_{oc} at antenna port

NR N_{oc} at antenna port

 $P_{R} = 1$

The test USIM shall be inserted.

The UE is in AUTOMATIC network selection mode.

 $ho_{\scriptscriptstyle B}$

[Initial conditions]

SS

.

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of LTE PDSCH and PDCCH before measurement are specified in Annex C.2 of TS 36.521-1.

Configurations of NR PDSCH and PDCCH before measurement are specified in Annex C.2 of TS 38.521-1.

Test Environment: Normal, as defined in TS 36.508 & TS 38.508-1 clause 4.1 for LTE & NR respectively.

1. Connect the LTE SS, the faders and AWGN noise sources to the UE antenna connectors as shown in TS 36.508 Annex A, Figure A.10 for antenna configuration 2x2.

- 2. Connect the NR SS, the faders and AWGN noise sources to the UE antenna connectors as shown in TS 36.508-1 Annex A, Figure A.3.2.1.5 for antenna configuration 4x4.
- 3. Connect an application server to the IP output of the SS configured with a FTP server.
- 4. LTE Downlink signals are initially set up according to Annex C.0, C.1 and Annex C.3.2 in TS 36.521-1 and uplink signals according to Annex H.1 and H.3.2 in TS 36.521-1.
- 5. NR Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.1 in TS 38.521-1 and uplink signals according to Annex G.1 and G.3.2 in TS 38.521-1.
- 6. LTE Propogation conditions are set according to Annex B.0 in TS 36.521-1.
- 7. NR Propagation conditions are set according to Annex B.0 in TS 38.521-1.

UE is powered off

10.4.3.5 Test procedure

PREAMBLE

- 1. SS Activates E-UTRAN Cell A configures the corresponding Master Information Block and System Information Block broadcast.
- 2. SS transmits LTE PDSCH via PDCCH DCI format 2A for C_RNTI to transmit the DL data using the transport format and transport block size.
- Set the parameters of the bandwidth, the propagation condition, the correlation matrix, EN-DC Configuration, Special subframe configuration, antenna configuration according to Table 10.4.1.4-1, Table 10.4.1.4-2, as appropriate. Transmission mode is set to TM3.
- SNR is set according to Table 5.1.1.4-1. Here SNR = Cell_power / Noc, in which Cell_power(EPRE) is a constant of -68dBm/15kHz, following the definition of TS 36.508 & 38.508.

MAIN BODY

- 5. The UE is powered ON.
- UE performs a Registration procedure on E-UTRAN Cell A to register for PS services. The UE establishes the default EPS bearer during the registration according to TS 36.508 subclause 4.5.2(steps 1-16).
- 7. SS Activates NR Cell B.
- 8. The SS transmits an RRC Connection Reconfiguration message containing information regarding NR Cell B and to establish SCG.
- 9. UE transmit an RRC Connection Reconfiguration Complete message to SS.
- 10. Using the FTP client, begin FTP download from the application server for [90] seconds and record Throughput result.
- 11. Repeat step 10 for one more iteration.
- 12. Calculate the average throughput at the application layer on the downlink channel during the file transfer over all iterations.
- 13. Switch Off UE, UE initiates a Detach procedure.

POSTAMBLE

14. Deactivate Cell A and Cell B.

	Message Sequence						
Step	U-S	Layer	Message	Specific Contents			
	÷	RRC	The SS Activates E-UTRAN Cell A configures the				
1			corresponding Master Information Block and				
			System Information Block broadcast				
2	SS		SS transmits PDSCH via PDCCH DCI format 2A				
			for C_RNTI				
	SS		Set the parameters of the bandwidth,				
3			propagation condition, correlation matrix,				
5			EN-DC Configuration, Special subframe				
			configuration and antenna configuration				
4			Cell Power is set				
5	UE		Switch On UE	AT Command			
6	\leftrightarrow	NAS	UE performs Registration procedure on		PASS		
0		RRC	E-UTRAN Cell A				
7			The SS activates NR Cell B				
8	← RRC	RRC	SS sends RRC Connection Reconfiguration				
õ			message				
9	\rightarrow	RRC	The UE transmits RRC Connection		PASS		
9			Reconfiguration Complete message				
10			Using FTP Client begin FTP Download		PASS		
11			Repeat Step 10	Repeat Step 10			
12	SS		Calculate Average Throughput		PASS		
13			Switch Off UE	AT Command			
14	SS		Deactivate Cell A & Cell B				

Table 10.4.3.5-1: Message Sequence

10.4.3.6 Expected Result

- 1. Calculate and record the average downlink TCP throughput
- Count and record the overall number of ACK and NACK/DTX on the PUSCH/PUCCH during the test interval.
- 3. The average downlink throughput at the application layer shall meet or exceed the value in following table.

Table 10.4.3.6-1: Expected Result for EN-DC FDD LTE Band + NR Band

Band Combination	Expected DL TCP Throughput
B3+n41	[1.7Gbps]
B3+n79	[0.78 Gbps]

10.4.4 DL Throughput under fading channel on SCG, NSA

10.4.4.1 Test Purpose

To measure the UE application layer downlink performance while downloading TCP based data in Conducted, fading Channel, NSA Option3x, 100 MHz BW, Full Resource Allocation, dynamic scheduling based on channel condition, data transmission on SCG

10.4.4.2 Reference specification

3GPP TS 36.331, 3GPP TS 36.508, 3GPP TS 36.521-1, 3GPP TS 38.331, 3GPP TS 38.508, 3GPP TS 38.521-1

10.4.4.3 Applicability

This test applies to Type 1 and Type 3 devices as described in clause 4.2.

10.4.4.4 Test conditions

[SS configuration] E-UTRAN Cell A, NR-RAN Cell B

E-UTRAN Cell A, Cell Id=01 TAC = 01 MCC = 460 MNC = 00 EARFCN= f1 rootSequenceIndex = 0 RB Allocation UL= Full RB Allocation DL = Full simultaneousAckNackAndCQI = TRUE

CPConfig = UL: Normal CP/DL: Normal CP

NR-RAN Cell B, Cell Id=02 TAC = 01 NR-ARFCN= f1 rootSequenceIndex = 0 RB Allocation UL= Full RB Allocation DL = Full simultaneousAckNackAndCQI = TRUE CPConfig = UL: Normal CP/DL: Normal CP

[Common conditions]

Common conditions include a set of test points the UE needs to be tested in and the common test parameters for each transmission mode.

Table 10.4.4.4-1: Test Points Configuration

		0
Test Point	Propagation	Correlation

	Conditions	Matrices
NSA-1	LTE Fading Profile :	Low
	EPA5 , NR Fading	
	Profile : TDLA30	
NSA-2	LTE Fading Profile :	Low
	EPA5 , NR Fading	
	Profile : TDLB100	
NSA-3	LTE Fading Profile :	Low
	EVA5 , NR Fading	
	Profile : TDLC300	

Table 10.4.4.4-2: Test Parameters for Testing

Parameter		Unit	Value
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-3
allocation	$ ho_{\scriptscriptstyle B}$	dB	-3(Note 1)
LTE N_{oc} at antenna port		dBm/15kHz	-98
NR N_{oc} at antenna port		dBm/30kHz	-98
Reporting mode			PUCCH 1-0
Note 1: $P_B = 1$			

[UE configuration]

The test USIM shall be inserted.

The UE is in AUTOMATIC network selection mode.

[Initial conditions]

SS

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of LTE PDSCH and PDCCH before measurement are specified in Annex C.2 of TS 36.521-1.

Configurations of NR PDSCH and PDCCH before measurement are specified in Annex C.2 of TS 38.521-1.

Test Environment: Normal, as defined in TS 36.508 & TS 38.508-1 clause 4.1 for LTE & NR respectively.

- 1. Connect the LTE SS, the faders and AWGN noise sources to the UE antenna connectors as shown in TS 36.508 Annex A, Figure A.10 for antenna configuration 2x2.
- 2. Connect the NR SS, the faders and AWGN noise sources to the UE antenna connectors as shown in TS 38.508-1 Annex A, Figure A.3.2.1.5 for antenna configuration 4x4.
- 3. Connect an application server to the IP output of the SS configured with a FTP server.

- 4. LTE Downlink signals are initially set up according to Annex C.0, C.1 and Annex C.3.2 in TS 36.521-1 and uplink signals according to Annex H.1 and H.3.2 in TS 36.521-1.
- 5. NR Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.1 in TS 38.521-1 and uplink signals according to Annex G.1 and G.3.2 in TS 38.521-1.
- 6. LTE Propogation conditions are set according to Annex B.0 in TS 36.521-1.
- 7. NR Propagation conditions are set according to Annex B.0 in TS 38.521-1.

UE is powered off

10.4.4.5 Test procedure

PREAMBLE

- 1. SS Activates E-UTRAN Cell A configures the corresponding Master Information Block and System Information Block broadcast.
- 2. SS transmits LTE PDSCH via PDCCH DCI format 2A for C_RNTI to transmit the DL data using the transport format and transport block size.
- Set the parameters of the bandwidth, the propagation condition, the correlation matrix, EN-DC Configuration, Special subframe configuration, antenna configuration according to Table 10.4.2.4-1, Table 10.4.2.4-2, as appropriate. Transmission mode is set to TM3.
- SNR is set according to Table 10.4.1.4-1. Here SNR = Cell_power / Noc, in which Cell_power(EPRE) is a constant of -68dBm/15kHz, following the definition of TS 36.508 & 38.508.

MAIN BODY

- 5. The UE is powered ON.
- 6. UE performs a Registration procedure on E-UTRAN Cell A to register for PS services. The UE establishes the default EPS bearer during the registration according to TS 36.508 sub clause 4.5.2(steps 1-16).
- 7. SS Activates NR Cell B.
- 8. The SS transmits an RRC Connection Reconfiguration message containing information regarding NR Cell B and to establish SCG.
- 9. UE transmit an RRC Connection Reconfiguration Complete message to SS.
- 10. Using the FTP client, begin FTP download from the application server for [90] seconds and record Throughput result.
- 11. Repeat step 10 for one more iteration.
- 12. Calculate the average throughput at the application layer on the downlink channel during the file transfer over all iterations.
- 13. Switch Off UE, UE initiates a Detach procedure.

POSTAMBLE

14. Deactivate Cell A and Cell B.

Table 10.4.4.5-1: Message Sequence

	Message Sequence			Verdict	
Step	U-S	Layer	Message	Specific Contents	
	←	RRC	The SS Activates E-UTRAN Cell A configures the		
1			corresponding Master Information Block and		
			System Information Block broadcast		
2	SS		SS transmits PDSCH via PDCCH DCI format 2A		
			for C_RNTI		
	SS		Set the parameters of the bandwidth,		
3			propagation condition, correlation matrix,		
Э			EN-DC Configuration, Special subframe		
			configuration and antenna configuration		
4			Cell Power is set		
5	UE		Switch On UE	AT Command	
C	\leftrightarrow	NAS	UE performs Registration procedure on		PASS
6		RRC	E-UTRAN Cell A		
7			The SS activates NR Cell B		
	÷	RRC	SS sends RRC Connection Reconfiguration		
8			message		
	\rightarrow	RRC	The UE transmits RRC Connection		PASS
9			Reconfiguration Complete message		
10			Using FTP Client begin FTP Download		PASS
11			Repeat Step 10		
12	SS	1	Calculate Average Throughput		PASS
13		1	Switch Off UE		
14	SS	1	Deactivate Cell A & Cell B		

10.4.4.6 Expected Result

- 1. Calculate and record the average downlink TCP throughput.
- 2. Calculate and record the average downlink throughput in MAC layer in SCG cell
- 3. Count and record the overall number of ACK and NACK/DTX on the PUSCH/PUCCH during the test interval.
- 4. The average downlink throughput at the application layer shall meet or exceed the value in following table.

Band Combination	Test Point	Expected DL TCP	Expect DL MAC Throughout	
		Throughput	in SCG	
B3+n41	NSA-1	FFS	FFS	
B3+n41	NSA-2	FFS	FFS	
B3+n41	NSA-3	FFS	FFS	

Table 10.4.4.6-1: Expected Result for EN-DC FDD LTE Band + NR Band

10.5 Uplink TCP Throughput, NSA

10.5.1 UL Throughput under static channel, UL 64QAM, NSA

10.5.1.1 Test Purpose

To measure the UE application layer uplink performance while uploading TCP based data in Conducted, Static Channel, NSA Option3, 100 MHz BW, Full Resource Allocation, UL NR 64QAM+LTE 64QAM, data transmission on MCG and SCG simultaneously

10.5.1.2 Reference specification

3GPP TS 36.331, 3GPP TS 36.508, 3GPP TS 36.521-1, 3GPP TS 38.331, 3GPP TS 38.508, 3GPP TS 38.521-1

10.5.1.3 Applicability

This test applies to Type 1 and Type 3 devices as described in clause 4.2.

10.5.1.4 Test conditions

[SS configuration] E-UTRAN Cell A, NR-RAN Cell B

E-UTRAN Cell A, Cell Id=01 TAC = 01 MCC = 460 MNC = 00 EARFCN= f1 rootSequenceIndex = 0 UL Modulation / Coding = 28 RB Allocation UL= Full RB Allocation DL = Full simultaneousAckNackAndCQI = TRUE enableUI64QAM = TRUE CPConfig = UL: Normal CP/DL: Normal CP

NR-RAN Cell B, Cell Id=02 TAC = 01 NR-ARFCN= f1 rootSequenceIndex = 0 UL Modulation / Coding = 28 RB Allocation UL= Full RB Allocation DL = Full simultaneousAckNackAndCQI = TRUE enableUI64QAM = TRUE

CPConfig = UL: Normal CP/DL: Normal CP

[Common conditions]

Common conditions include a set of test points the UE needs to be tested in and the common test parameters for each transmission mode.

Test Point	Propagation Conditions		Correlation Matrices		
NR-1			Static		N/A
		Table 10	.5.1.4-2: Test Param	eters	for Testing
Paran	neter		Unit		Value
Downlink power		$ ho_{\scriptscriptstyle A}$	dB		-3
allocation		$ ho_{\scriptscriptstyle B}$	dB		-3(Note 1)
LTE $N_{\it oc}$ at antenna port		dBm/15kHz	-98		
NR $N_{\it oc}$ at antenna port		dBm/30kHz		-98	
Reporting mode				PUCCH 1-0	
Note 1: $P_B = 1$				•	

Table 10.5.1.4-1: Test Points Configuration

[UE configuration]

The test USIM shall be inserted.

The UE is in AUTOMATIC network selection mode.

[Initial conditions]

SS

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of LTE PUSCH and PUCCH before measurement are specified in Annex H.2 of TS 36.521-1.

Configurations of NR PUSCH and PUCCH before measurement are specified in Annex G.2 of TS 38.521-1.

Test Environment: Normal, as defined in TS 36.508 & TS 38.508-1 clause 4.1 for LTE & NR respectively.

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 Annex A, Figure A.3.1.1.1.
- 2. Connect an application server to the IP output of the SS configured with a FTP server.
- 3. LTE Downlink signals are initially set up according to Annex C.0, C.1 and Annex C.3.2 in TS 36.521-1 and uplink signals according to Annex H.1 and H.3.2 in TS 36.521-1.

- 4. NR Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.1 in TS 38.521-1 and uplink signals according to Annex G.1 and G.3.2 in TS 38.521-1.
- 5. LTE Propogation conditions are set according to Annex B.0 in TS 36.521-1.
- 6. NR Propagation conditions are set according to Annex B.0 in TS 38.521-1.

UE is powered off

10.5.1.5 Test procedure

PREAMBLE

- 1. SS Activates E-UTRAN Cell A configures the corresponding Master Information Block and System Information Block broadcast.
- SS transmits LTE PUSCH via PUCCH DCI format 0 for C_RNTI to transmit the UL data using the transport format and transport block size. SS transmits PUSCH via PUCCH DCI format 0_0 for C_RNTI to transmit the UL data using the fixed transport format and transport block size.
- Set the parameters of the bandwidth, the propagation condition, the correlation matrix, EN-DC Configuration, Special subframe configuration, antenna configuration according to Table 10.5.1.4-1, Table 10.5.1.4-2, as appropriate. Transmission mode is set to TM3.
- SNR is set according to Table 10.5.1.4-1. Here SNR = Cell_power / Noc, in which Cell_power(EPRE) is a constant of -68dBm/15kHz, following the definition of TS 36.508 & 38.508.

MAIN BODY

- 5. The UE is powered ON.
- UE performs a Registration procedure on E-UTRAN Cell A to register for PS services. The UE establishes the default EPS bearer during the registration according to TS 36.508 subclause 4.5.2(steps 1-16).
- 7. SS Activates NR Cell B.
- 8. The SS transmits an RRC Connection Reconfiguration message containing information regarding NR Cell B and to establish MCG & SCG.
- 9. UE transmit an RRC Connection Reconfiguration Complete message to SS.
- 10. Using the FTP client, begin FTP upload from the application server for [90] seconds and record Throughput result.
- 11. Repeat step 10 for one more iteration.
- 12. Calculate the average throughput at the application layer on the uplink channel during the file transfer over all iterations.
- 13. Switch Off UE, UE initiates a Detach procedure.

POSTAMBLE

14. Deactivate Cell A and Cell B.

Table 10.5.1.5-1: Message Sequence

			Message Sequence		Verdict
Step	U-S	Layer	Message	Specific Contents	
	÷	RRC	The SS Activates E-UTRAN Cell A configures the		
1			corresponding Master Information Block and		
			System Information Block broadcast		
2	SS		SS transmits LTE PUSCH via PUCCH DCI format 0		
			for C_RNTI to transmit the UL data using the		
			transport format and transport block size. SS		
			transmits PUSCH via PUCCH DCI format 0_0_for		
			C_RNTI to transmit the DL data using the fixed		
			transport format and transport block size.		
	SS		Set the parameters of the bandwidth,		
3			propagation condition, correlation matrix,		
5			EN-DC Configuration, Special subframe		
			configuration and antenna configuration		
4			Cell Power is set		
5	UE		Switch On UE	AT Command	
6	\leftrightarrow	NAS	UE performs Registration procedure on		PASS
0		RRC	E-UTRAN Cell A		
7			The SS activates Cell B		
8	÷	RRC	SS sends RRC Connection Reconfiguration		
ð			message		
9	\rightarrow	RRC	The UE transmits RRC Connection		PASS
9			Reconfiguration Complete message		
10			Using FTP Client begin FTP Upload		PASS
11			Repeat Step 10		
12	SS		Calculate Average Throughput		PASS
13			Switch Off UE	AT Command	
14	SS		Deactivate Cell A		

10.5.1.6 Expected Result

- 1. Calculate and record the average uplink TCP throughput.
- 2. Calculate and record the average uplink throughput in MAC layer in SCG cell and MCG cell respectively
- 3. Count and record the overall number of ACK and NACK/DTX on the PUSCH/PUCCH during the test interval.
- 4. The average uplink throughput at the application layer shall meet or exceed the value in following table.

Band	Expected UL TCP Throughput	Expected UL MAC	Expected UL MAC
Combination		Throughput in MCG	Throughput in SCG
B3+n41	[130 Mbps]	[37 Mbps]	[95 Mbps]

Table 10.5.1.6-1: Expected Result for EN-DC FDD LTE Band + NR Band

10.5.2 UL Throughput under static channel, UL 256QAM, NSA

10.5.2.1 Test Purpose

To measure the UE application layer uplink performance while uploading TCP based data in Conducted, Static Channel, NSA Option3, 100 MHz BW, Full Resource Allocation, UL NR 256QAM+LTE 64QAM,data transmission on MCG and SCG simultaneously

10.5.2.2 Reference specification

3GPP TS 36.331, 3GPP TS 36.508, 3GPP TS 36.521-1, 3GPP TS 38.331, 3GPP TS 38.508, 3GPP TS 38.521-1

10.5.2.3 Applicability

This test applies to Type 1 and Type 3 devices as described in clause 4.2.

10.5.2.4 Test conditions

[SS configuration] E-UTRAN Cell A, NR-RAN Cell B

E-UTRAN Cell A, Cell Id=01 TAC = 01 MCC = 460 MNC = 00 EARFCN= f1 rootSequenceIndex = 0 UL Modulation / Coding = 28 RB Allocation UL= Full RB Allocation DL = Full simultaneousAckNackAndCQI = TRUE enableUI64QAM = TRUE CPConfig = UL: Normal CP/DL: Normal CP

NR-RAN Cell B, Cell Id=02 TAC = 01 NR-ARFCN= f1 rootSequenceIndex = 0 UL Modulation / Coding = 27 RB Allocation UL= Full RB Allocation DL = Full simultaneousAckNackAndCQI = TRUE enableUI256QAM = TRUE CPConfig = UL: Normal CP/DL: Normal CP

[Common conditions]

Common conditions include a set of test points the UE needs to be tested in and the common test parameters for each transmission mode.

Table 10.5.2.4-1: Test Points Configuration					
Test Point Propagation Correlation					
Conditions		Matrices			
NR-1	Static	N/A			

5 2 4 4 Test Delinte C

Table 10.5.2.4-2: Test Parameters for Testing

Parameter		Unit	Value		
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-3		
allocation	$ ho_{\scriptscriptstyle B}$	dB	-3(Note 1)		
LTE N_{oc} at antenna port		dBm/15kHz	-98		
LTE N_{oc} at antenna port		dBm/30kHz	-98		
Reporting mode			PUCCH 1-0		
Note 1: $P_B = 1$	p = 1				

[UE configuration]

The test USIM shall be inserted.

The UE is in AUTOMATIC network selection mode.

[Initial conditions]

SS

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of LTE PUSCH and PUCCH before measurement are specified in Annex H.2 of TS 36.521-1.

Configurations of NR PUSCH and PUCCH before measurement are specified in Annex G.2 of TS 38.521-1.

Test Environment: Normal, as defined in TS 36.508 & TS 38.508-1 clause 4.1 for LTE & NR respectively.

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 Annex A, Figure A.3.1.1.1.
- 2. Connect an application server to the IP output of the SS configured with a FTP server.
- LTE Downlink signals are initially set up according to Annex C.0, C.1 and Annex C.3.2 in 3. TS 36.521-1 and uplink signals according to Annex H.1 and H.3.2 in TS 36.521-1.

- 4. NR Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.1 in TS 38.521-1 and uplink signals according to Annex G.1 and G.3.2 in TS 38.521-1.
- 5. LTE Propogation conditions are set according to Annex B.0 in TS 36.521-1.
- 6. NR Propagation conditions are set according to Annex B.0 in TS 38.521-1.

UE is powered off

10.5.2.5 Test procedure

PREAMBLE

- 1. SS Activates E-UTRAN Cell A configures the corresponding Master Information Block and System Information Block broadcast.
- SS transmits LTE PUSCH via PUCCH DCI format 0 for C_RNTI to transmit the DL data using the transport format and transport block size. SS transmits PUSCH via PUCCH DCI format 0_0 for C_RNTI to transmit the UL data using the fixed transport format and transport block size.
- Set the parameters of the bandwidth, the propagation condition, the correlation matrix, EN-DC Configuration, Special subframe configuration, antenna configuration according to Table 10.5.2.4-1, Table 10.5.2.4-2, as appropriate. Transmission mode is set to TM3.
- SNR is set according to Table 10.5.2.4-1. Here SNR = Cell_power / Noc, in which Cell_power(EPRE) is a constant of -68dBm/15kHz, following the definition of TS 36.508 & 38.508.

MAIN BODY

- 5. The UE is powered ON.
- UE performs a Registration procedure on E-UTRAN Cell A to register for PS services. The UE establishes the default EPS bearer during the registration according to TS 36.508 subclause 4.5.2(steps 1-16).
- 7. SS Activates NR Cell B.
- 8. The SS transmits an RRC Connection Reconfiguration message containing information regarding NR Cell B and to establish MCG & SCG.
- 9. UE transmit an RRC Connection Reconfiguration Complete message to SS.
- 10. Using the FTP client, begin FTP upload from the application server for [90] seconds and record Throughput result.
- 11. Repeat step 10 for one more iteration.
- 12. Calculate the average throughput at the application layer on the downlink channel during the file transfer over all iterations.
- 13. Switch Off UE, UE initiates a Detach procedure.

POSTAMBLE

14. Deactivate Cell A and Cell B.

Table 10.5.2.5-1: Message Sequence

Chan			Message Sequence		Verdict
Step	U-S	Layer	Message	Specific Contents	
	÷	RRC	The SS Activates E-UTRAN Cell A		
1			configures the corresponding Master		
T			Information Block and System		
			Information Block broadcast		
2	SS		SS transmits LTE PUSCH via PUCCH DCI		
			format 0 for C_RNTI to transmit the UL		
			data using the transport format and		
			transport block size. SS transmits PUSCH		
			via PUCCH DCI format 0_0 for C_RNTI to		
			transmit the DL data using the fixed		
			transport format and transport block size.		
	SS		Set the parameters of the bandwidth,		
3			propagation condition, correlation matrix,		
5			EN-DC Configuration, Special subframe		
			configuration and antenna configuration		
4			Cell Power is set		
5	UE		Switch On UE	AT Command	
6	\leftrightarrow	NAS	UE performs Registration procedure on		PASS
Ũ		RRC	E-UTRAN Cell A		
7			The SS activates Cell B		
8	÷	RRC	SS sends RRC Connection Reconfiguration		
0			message		
9	\rightarrow	RRC	The UE transmits RRC Connection		PASS
5			Reconfiguration Complete message		
10			Using FTP Client begin FTP Upload		PASS
11			Repeat Step 10		
12	SS		Calculate Average Throughput		PASS
13			Switch Off UE	AT Command	
14	SS		Deactivate Cell A		

10.5.2.6 Expected Result

- 1. Calculate and record the average UL TCP throughput.
- 2. Calculate and record the average uplink throughput in MAC layer in SCG cell and MCG cell respectively
- 3. Count and record the overall number of ACK and NACK/DTX on the PUSCH/PUCCH during the test interval.
- 4. The average uplink throughput at the application layer shall meet or exceed the value in following table.

Band	Expected UL TCP Throughput	Expected UL MAC	Expected UL MAC
Combination		Throughput in MCG	Throughput in SCG

Table 10.5.2.6-1: Expected Result for EN-DC FDD LTE Band + NR Band

B3+n41	[162 Mbps]	[37 Mbps]	[125 Mbps]
--------	------------	-----------	-------------

10.5.3 UL Throughput under static channel on SCG, UL 64QAM, NSA

10.5.3.1 Test Purpose

To measure the UE application layer uplink performance while uploading TCP based data in Conducted, Static Channel, NSA Option3, 100 MHz BW, Full Resource Allocation, UL NR 64QAM , data transmission on SCG

10.5.3.2 Reference specification

3GPP TS 36.331, 3GPP TS 36.508, 3GPP TS 36.521-1, 3GPP TS 38.331, 3GPP TS 38.508, 3GPP TS 38.521-1

10.5.3.3 Applicability

This test applies to Type 1 and Type 3 devices as described in clause 4.2.

10.5.3.4 Test conditions

[SS configuration] E-UTRAN Cell A, NR-RAN Cell B

E-UTRAN Cell A, Cell Id=01 TAC = 01 MCC = 460 MNC = 00 EARFCN= f1 rootSequenceIndex = 0 UL Modulation / Coding = 10 RB Allocation UL= Full RB Allocation DL = Full simultaneousAckNackAndCQI = TRUE CPConfig = UL: Normal CP/DL: Normal CP

NR-RAN Cell B, Cell Id=02 TAC = 01 NR-ARFCN= f1 rootSequenceIndex = 0 UL Modulation / Coding = 28 RB Allocation UL= Full RB Allocation DL = Full simultaneousAckNackAndCQI = TRUE enableUI64QAM = TRUE

CPConfig = UL: Normal CP/DL: Normal CP

[Common conditions]

Common conditions include a set of test points the UE needs to be tested in and the common test parameters for each transmission mode.

Test Point	Propagation Conditions	Correlation Matrices	
NR-1	Static	N/A	

Parameter		Unit	Value
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-3
allocation	$ ho_{\scriptscriptstyle B}$	dB	-3(Note 1)
LTE N_{oc} at antenna port		dBm/15kHz	-98
NR N_{oc} at antenna port		dBm/30kHz	-98
Reporting mode			PUCCH 1-0
Note 1: $P_B = 1$			

Table 10.5.3.4-2: Test Parameters for Testing

[UE configuration]

The test USIM shall be inserted.

The UE is in AUTOMATIC network selection mode.

[Initial conditions]

SS

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of LTE PUSCH and PUCCH before measurement are specified in Annex H.2 of TS 36.521-1.

Configurations of NR PUSCH and PUCCH before measurement are specified in Annex G.2 of TS 38.521-1.

Test Environment: Normal, as defined in TS 36.508 & TS 38.508-1 clause 4.1 for LTE & NR respectively.

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 Annex A, Figure A.3.1.1.1.
- 2. Connect an application server to the IP output of the SS configured with a FTP server.
- 3. LTE Downlink signals are initially set up according to Annex C.0, C.1 and Annex C.3.2 in TS 36.521-1 and uplink signals according to Annex H.1 and H.3.2 in TS 36.521-1.

- 4. NR Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.1 in TS 38.521-1 and uplink signals according to Annex G.1 and G.3.2 in TS 38.521-1.
- 5. LTE Propogation conditions are set according to Annex B.0 in TS 36.521-1.
- 6. NR Propagation conditions are set according to Annex B.0 in TS 38.521-1.

UE is powered off

10.5.3.5 Test procedure

PREAMBLE

- 1. SS Activates E-UTRAN Cell A configures the corresponding Master Information Block and System Information Block broadcast.
- SS transmits LTE PUSCH via PUCCH DCI format 0 for C_RNTI to transmit the UL data using the transport format and transport block size. SS transmits PUSCH via PUCCH DCI format 0_0 for C_RNTI to transmit the UL data using the fixed transport format and transport block size.
- Set the parameters of the bandwidth, the propagation condition, the correlation matrix, EN-DC Configuration, Special subframe configuration, antenna configuration according to Table 10.5.1.4-1, Table 10.5.1.4-2, as appropriate. Transmission mode is set to TM3.
- SNR is set according to Table 10.5.1.4-1. Here SNR = Cell_power / Noc, in which Cell_power(EPRE) is a constant of -68dBm/15kHz, following the definition of TS 36.508 & 38.508.

MAIN BODY

- 5. The UE is powered ON.
- UE performs a Registration procedure on E-UTRAN Cell A to register for PS services. The UE establishes the default EPS bearer during the registration according to TS 36.508 subclause 4.5.2(steps 1-16).
- 7. SS Activates NR Cell B.
- 8. The SS transmits an RRC Connection Reconfiguration message containing information regarding NR Cell B and to establish SCG.
- 9. UE transmit an RRC Connection Reconfiguration Complete message to SS.
- 10. Using the FTP client, begin FTP upload from the application server for [90] seconds and record Throughput result.
- 11. Repeat step 10 for one more iteration.
- 12. Calculate the average throughput at the application layer on the downlink channel during the file transfer over all iterations.
- 13. Switch Off UE, UE initiates a Detach procedure.

POSTAMBLE

14. Deactivate Cell A and Cell B.

	Message Sequence Verd			Verdict		
Step	U-S	Layer	Message Specific Contents			
	÷	RRC	The SS Activates E-UTRAN Cell A configures the			
1			corresponding Master Information Block and			
			System Information Block broadcast			
2	SS		SS transmits LTE PUSCH via PUCCH DCI format 0 for			
			C_RNTI to transmit the UL data using the transport			
			format and transport block size. SS transmits PUSCH			
			via PUCCH DCI format 0_0 for C_RNTI to transmit the			
			DL data using the fixed transport format and			
			transport block size.			
	SS		Set the parameters of the bandwidth,			
3			propagation condition, correlation matrix,			
5			EN-DC Configuration, Special subframe			
			configuration and antenna configuration			
4			Cell Power is set			
5	UE		Switch On UE AT Command			
6	\leftrightarrow	NAS	UE performs Registration procedure on PAS		PASS	
0		RRC	E-UTRAN Cell A			
7			The SS activates Cell B			
8	÷	RRC	SS sends RRC Connection Reconfiguration			
0			message			
9	\rightarrow	RRC	The UE transmits RRC Connection		PASS	
9			Reconfiguration Complete message			
10			Using FTP Client begin FTP Upload		PASS	
11			Repeat Step 10			
12	SS		Calculate Average Throughput		PASS	
13			Switch Off UE	AT Command		
14	SS		Deactivate Cell A			

10.5.3.6 Expected Result

- 1. Calculate and record the average uplink TCP throughput.
- 2. Count and record the overall number of ACK and NACK/DTX on the PUSCH/PUCCH during the test interval.
- 3. The average uplink throughput at the application layer shall meet or exceed the value in following table.

Band Combination	Expected UL TCP Throughput
B3+n41	[95Mbps]
B3+n79	[285 Mbps]

Table 10.5.3.6-1: Expected Result for EN-DC FDD LTE Band + NR Band

10.5.4 UL Throughput under static channel on SCG, UL 256QAM, NSA

10.5.4.1 Test Purpose

To measure the UE application layer uplink performance while uploading TCP based data in Conducted, Static Channel, NSA Option3, 100 MHz BW, Full Resource Allocation, UL NR 256QAM data transmission on SCG

10.5.4.2 Reference specification

3GPP TS 36.331, 3GPP TS 36.508, 3GPP TS 36.521-1, 3GPP TS 38.331, 3GPP TS 38.508, 3GPP TS 38.521-1

10.5.4.3 Applicability

This test applies to Type 1 and Type 3 devices as described in clause 4.2.

10.5.4.4 Test conditions

[SS configuration] E-UTRAN Cell A, NR-RAN Cell B

E-UTRAN Cell A, Cell Id=01 TAC = 01 MCC = 460 MNC = 00 EARFCN= f1 rootSequenceIndex = 0 UL Modulation / Coding = 10 RB Allocation UL= Full RB Allocation DL = Full simultaneousAckNackAndCQI = TRUE CPConfig = UL: Normal CP/DL: Normal CP

NR-RAN Cell B, Cell Id=02 TAC = 01 NR-ARFCN= f1 rootSequenceIndex = 0 UL Modulation / Coding = 27 RB Allocation UL= Full RB Allocation DL = Full simultaneousAckNackAndCQI = TRUE enableUI256QAM = TRUE CPConfig = UL: Normal CP/DL: Normal CP

[Common conditions]

Common conditions include a set of test points the UE needs to be tested in and the common test parameters for each transmission mode.

Tuble 10.5.4.4 1. Test Follits conliguration			
Test Point	Propagation Conditions	Correlation Matrices	
NR-1	Static	N/A	

Table 10.5.4.4-2: Test Parameters for Testing

Parameter		Unit	Value	
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-3	
allocation	$ ho_{\scriptscriptstyle B}$	dB	-3(Note 1)	
LTE N_{oc} at antenna port		dBm/15kHz	-98	
NR N_{oc} at antenna port		dBm/30kHz	-98	
Reporting mode			PUCCH 1-0	
Note 1: $P_B = 1$				

[UE configuration]

The test USIM shall be inserted.

The UE is in AUTOMATIC network selection mode.

[Initial conditions]

SS

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of LTE PUSCH and PUCCH before measurement are specified in Annex H.2 of TS 36.521-1.

Configurations of NR PUSCH and PUCCH before measurement are specified in Annex G.2 of TS 38.521-1.

Test Environment: Normal, as defined in TS 36.508 & TS 38.508-1 clause 4.1 for LTE & NR respectively.

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 Annex A, Figure A.3.1.1.1.
- 2. Connect an application server to the IP output of the SS configured with a FTP server.
- 3. LTE Downlink signals are initially set up according to Annex C.0, C.1 and Annex C.3.2 in TS 36.521-1 and uplink signals according to Annex H.1 and H.3.2 in TS 36.521-1.

- 4. NR Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.1 in TS 38.521-1 and uplink signals according to Annex G.1 and G.3.2 in TS 38.521-1.
- 5. LTE Propogation conditions are set according to Annex B.0 in TS 36.521-1.
- 6. NR Propagation conditions are set according to Annex B.0 in TS 38.521-1.

UE is powered off

10.5.4.5 Test procedure

PREAMBLE

- 1. SS Activates E-UTRAN Cell A configures the corresponding Master Information Block and System Information Block broadcast.
- SS transmits LTE PUSCH via PUCCH DCI format 0 for C_RNTI to transmit the UL data using the transport format and transport block size. SS transmits PUSCH via PUCCH DCI format 0_0 for C_RNTI to transmit the UL data using the fixed transport format and transport block size.
- Set the parameters of the bandwidth, the propagation condition, the correlation matrix, EN-DC Configuration, Special subframe configuration, antenna configuration according to Table 10.5.2.4-1, Table 10.5.2.4-2, as appropriate. Transmission mode is set to TM3.
- SNR is set according to Table 10.5.2.4-1. Here SNR = Cell_power / Noc, in which Cell_power(EPRE) is a constant of -68dBm/15kHz, following the definition of TS 36.508 & 38.508.

MAIN BODY

- 5. The UE is powered ON.
- UE performs a Registration procedure on E-UTRAN Cell A to register for PS services. The UE establishes the default EPS bearer during the registration according to TS 36.508 subclause 4.5.2(steps 1-16).
- 7. SS Activates NR Cell B.
- 8. The SS transmits an RRC Connection Reconfiguration message containing information regarding NR Cell B and to establish SCG.
- 9. UE transmit an RRC Connection Reconfiguration Complete message to SS.
- 10. Using the FTP client, begin FTP upload from the application server for [90] seconds and record Throughput result.
- 11. Repeat step 10 for one more iteration.
- 12. Calculate the average throughput at the application layer on the downlink channel during the file transfer over all iterations.
- 13. Switch Off UE, UE initiates a Detach procedure.

POSTAMBLE

14. Deactivate Cell A and Cell B.

Table 10.5.4.5-1: Message Sequence

	Message Sequence Verdict				Verdict	
Step	U-S	Layer	Message Specific Contents			
	÷	RRC	The SS Activates E-UTRAN Cell A configures the			
1			corresponding Master Information Block and			
			System Information Block broadcast			
2	SS		SS transmits LTE PUSCH via PUCCH DCI format 0 for			
			C_RNTI to transmit the UL data using the transport			
			format and transport block size. SS transmits PUSCH			
			via PUCCH DCI format 0_0 for C_RNTI to transmit the			
			DL data using the fixed transport format and			
			transport block size.			
	SS		Set the parameters of the bandwidth,			
3			propagation condition, correlation matrix,			
5			EN-DC Configuration, Special subframe			
			configuration and antenna configuration			
4			Cell Power is set			
5	UE		Switch On UE AT Command			
6	\leftrightarrow	NAS	UE performs Registration procedure on PASS		PASS	
0		RRC	E-UTRAN Cell A			
7			The SS activates Cell B			
0	÷	RRC	SS sends RRC Connection Reconfiguration			
8			message			
_	\rightarrow	RRC	The UE transmits RRC Connection		PASS	
9			Reconfiguration Complete message			
10			Using FTP Client begin FTP Upload		PASS	
11			Repeat Step 10			
12	SS		Calculate Average Throughput		PASS	
13			Switch Off UE	AT Command		
14	SS		Deactivate Cell A			

10.5.4.6 Expected Result

- 1. Calculate and record the average UL TCP throughput
- 2. Count and record the overall number of ACK and NACK/DTX on the PUSCH/PUCCH during the test interval.
- 3. The average uplink throughput at the application layer shall meet or exceed the value in following table.

Band Combination	Expected UL TCP Throughput
B3+n41	[125Mbps]
B3+n79	[380 Mbps]

Table 10.5.4.6-1: Expected Result for EN-DC FDD LTE Band + NR Band

10.6 Bidirectional UDP Throughput, NSA

10.6.1 Bidirectional Throughput under static channel, 256QAM, NSA

10.6.1.1 Test Purpose

To measure the UE application layer Bidirectional performance while downloading & uploading simultaneously UDP based data in Conducted, Static Channel, NSA Option3, 100 MHz BW, Full Resource Allocation, DL NR 4*4 MIMO+ LTE2*2 MIMO, DL NR 256QAM+ LTE 256QAM, UL NR 256QAM+LTE 64QAM, data transmission on MCG and SCG simultaneously

10.6.1.2 Reference specification

3GPP TS 36.331, 3GPP TS 36.508, 3GPP TS 36.521-1, 3GPP TS 38.331, 3GPP TS 38.508, 3GPP TS 38.521-1

10.6.1.3 Applicability

This test applies to Type 1 and Type 3 devices as described in clause 4.2.

10.6.1.4 Test conditions

[SS configuration] E-UTRAN Cell A, NR-RAN Cell B

E-UTRAN Cell A, Cell Id=01 TAC = 01 MCC = 460 MNC = 00 EARFCN= f1 rootSequenceIndex = 0 DL Modulation / Coding = 27 UL Modulation / Coding = 28RB Allocation UL= Full RB Allocation DL = Full simultaneousAckNackAndCQI = TRUE enableDL256QAM= TRUE enableUL64QAM = TRUE CPConfig = UL: Normal CP/DL: Normal CP

NR-RAN Cell B, Cell Id=02 TAC = 01 NR-ARFCN= f1 rootSequenceIndex = 0 DL Modulation / Coding = 27 UL Modulation / Coding = 27 RB Allocation UL= Full RB Allocation DL = Full

simultaneousAckNackAndCQI = TRUE enable4x4MIMO = TRUE enableDL256QAM = TRUE enableUL256QAM = TRUE CPConfig = UL: Normal CP/DL: Normal CP

[Common conditions]

Common conditions include a set of test points the UE needs to be tested in and the common test parameters for each transmission mode.

Test Point	Propagation Conditions	Correlation Matrices
NSA-1	Static	N/A

Table 10.6.1.4-1: Test Points Configuration

Parameter		Unit	Value
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-3
allocation	$ ho_{\scriptscriptstyle B}$	dB	-3(Note 1)
LTE N_{oc} at antenna port		dBm/15kHz	-98
NR N_{oc} at antenna port		dBm/30kHz	-98
Reporting mode			PUCCH 1-0
Note 1: $P_B = 1$		· · ·	

Table 10.6.1.4-2: Test Parameters for Testing

[UE configuration]

The test USIM shall be inserted.

The UE is in AUTOMATIC network selection mode.

[Initial conditions]

SS

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of LTE PDSCH and PDCCH before measurement are specified in Annex C.2 of TS 36.521-1.

Configurations of NR PDSCH and PDCCH before measurement are specified in Annex C.2 of TS 38.521-1.

Test Environment: Normal, as defined in TS 36.508 & TS 38.508-1 clause 4.1 for LTE & NR respectively.

Frequencies to be tested: Mid Range, as defined in TS 36.508 & TS 38.508-1 for LTE & NR respectively.

1. Connect the LTE SS, the faders and AWGN noise sources to the UE antenna connectors as shown in TS 36.508 Annex A, Figure A.10 for antenna configuration 2x2.

- 2. Connect the NR SS, the faders and AWGN noise sources to the UE antenna connectors as shown in TS 36.508-1 Annex A, Figure A.3.2.1.5 for antenna configuration 4x4.
- 3. Connect an application server to the IP output of the SS configured with a UDP server.
- 4. LTE Downlink signals are initially set up according to Annex C.0, C.1 and Annex C.3.2 in TS 36.521-1 and uplink signals according to Annex H.1 and H.3.2 in TS 36.521-1.
- 5. NR Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.1 in TS 38.521-1 and uplink signals according to Annex G.1 and G.3.2 in TS 38.521-1.
- 6. LTE Propogation conditions are set according to Annex B.0 in TS 36.521-1.
- 7. NR Propagation conditions are set according to Annex B.0 in TS 38.521-1.

UE is powered off

10.6.1.5 Test procedure

PREAMBLE

- 1. SS Activates E-UTRAN Cell A configures the corresponding Master Information Block and System Information Block broadcast.
- 2. SS transmits LTE PDSCH via PDCCH DCI format 2A for C_RNTI to transmit the DL data using the transport format and transport block size.
- Set the parameters of the bandwidth, the propagation condition, the correlation matrix, EN-DC Configuration, Special subframe configuration, antenna configuration according to Table 10.6.1.4-1, Table 10.6.1.4-2, as appropriate. Transmission mode is set to TM3.
- SNR is set according to Table 10.6.1.4-1. Here SNR = Cell_power / Noc, in which Cell_power(EPRE) is a constant of -68dBm/15kHz, following the definition of TS 36.508 & 38.508.

MAIN BODY

- 5. The UE is powered ON.
- UE performs a Registration procedure on E-UTRAN Cell A to register for PS services. The UE establishes the default EPS bearer during the registration according to TS 36.508 subclause 4.5.2(steps 1-16).
- 7. SS Activates NR Cell B.
- 8. The SS transmits an RRC Connection Reconfiguration message containing information regarding NR Cell B and to establish MCG & SCG.
- 9. UE transmit an RRC Connection Reconfiguration Complete message to SS.
- 10. Using the UDP client, begin UDP download from the application server for [90] seconds and record Throughput result.
- 11. Repeat step 10 for one more iteration.
- 12. Calculate the average throughput at the application layer on the downlink and uplink channel during the file transfer over all iterations.
- 13. Switch Off UE, UE initiates a Detach procedure.

POSTAMBLE

14. Deactivate Cell A and Cell B.

	Message Sequence				Verdict
Step	U-S Layer Message			Specific Contents	
	÷	RRC	The SS Activates E-UTRAN Cell A configures the		
1			corresponding Master Information Block and		
			System Information Block broadcast		
2	SS		SS transmits PDSCH via PDCCH DCI format 2A for		
			C_RNTI		
	SS		Set the parameters of the bandwidth,		
3			propagation condition, correlation matrix,		
5			EN-DC Configuration, Special subframe		
			configuration and antenna configuration		
4			Cell Power is set		
5	UE		Switch On UE AT Command		
6	\leftrightarrow	NAS	UE performs Registration procedure on		PASS
D		RRC	E-UTRAN Cell A		
7			The SS activates NR Cell B		
0	8 ← R	RRC	SS sends RRC Connection Reconfiguration		
0			message		
9	\rightarrow	RRC	The UE transmits RRC Connection		PASS
9			Reconfiguration Complete message		
10			Using UDP Client begin UDP Download		PASS
11			Repeat Step 10		
12	SS		Calculate Average Throughput		PASS
13	Switch Off UE AT Com		AT Command		
14	14 SS Deactivate Cell A & Cell B				

Table 10.6.1.5-1: Message Sequence

10.6.1.6 Expected Result

- 1. Calculate and record the average uplink UDP throughput and downlink UDP throughput.
- 2. Calculate and record the average downlink throughput in MAC layer in SCG cell and MCG cell respectively
- 3. Calculate and record the average uplink throughput in MAC layer in SCG cell and MCG cell respectively
- 4. Count and record the overall number of ACK and NACK/DTX on the PUSCH/PUCCH during the test interval.
- 5. The average downlink and uplink throughput at the application layer shall meet or exceed the value in following table.

Band Combination	Expected DL	Expected DL MAC	Expected DL MAC
	UDP Throughput	Throughput in MCG	Throughput in SCG

B3+n41	FFS	FFS	FFS

Band Combination	Expected UL UDP	Expected UL MAC	Expected UL MAC
	Throughput	Throughput in MCG	Throughput in SCG
B3+n41	FFS	FFS	FFS

Table 10.6.1.6-2: UL Expected Result for EN-DC FDD LTE Band + NR Band

10.6.2 Bidirectional Throughput under fading channel, NSA

10.6.2.1 Test Purpose

To measure the UE application layer Bidirectional performance while downloading & uploading simultaneously UDP based data in Conducted, fading Channel, NSA Option3, 100 MHz BW, Full Resource Allocation, dynamic scheduling based on channel condition, data transmission on MCG and SCG simultaneously

10.6.2.2 Reference specification

3GPP TS 36.331, 3GPP TS 36.508, 3GPP TS 36.521-1, 3GPP TS 38.331, 3GPP TS 38.508, 3GPP TS 38.521-1

10.6.2.3 Applicability

This test applies to Type 1 and Type 3 devices as described in clause 4.2..

10.6.2.4 Test conditions

[SS configuration] E-UTRAN Cell A, NR-RAN Cell B

E-UTRAN Cell A, Cell Id=01 TAC = 01 MCC = 460 MNC = 00 EARFCN= f1 rootSequenceIndex = 0 RB Allocation UL= Full RB Allocation DL = Full simultaneousAckNackAndCQI = TRUE CPConfig = UL: Normal CP/DL: Normal CP

NR-RAN Cell B, Cell Id=02 TAC = 01 NR-ARFCN= f1 rootSequenceIndex = 0 RB Allocation UL= Full

RB Allocation DL = Full simultaneousAckNackAndCQI = TRUE CPConfig = UL: Normal CP/DL: Normal CP

[Common conditions]

Common conditions include a set of test points the UE needs to be tested in and the common test parameters for each transmission mode.

Test Point	Propagation	Correlation
	Conditions	Matrices
NSA-1	LTE Fading Profile :	Low
	EPA5 , NR Fading	
	Profile : TDLA30	
NSA-2	LTE Fading Profile :	Low
	EPA5 , NR Fading	
	Profile : TDLB100	
NSA-3	LTE Fading Profile :	Low
	EVA5 , NR Fading	
	Profile : TDLC300	

Table 10.6.2.4-1: Test Points Configuration

Table 10.6.2.4-2: Test Parameters for Testing

Parameter		Unit	Value
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-3
allocation	$ ho_{\scriptscriptstyle B}$	dB	-3(Note 1)
LTE N_{oc} at antenna port		dBm/15kHz	-98
NR N_{oc} at antenna port		dBm/30kHz	-98
Reporting mode			PUCCH 1-0
Note 1: $P_B = 1$			

[UE configuration]

The test USIM shall be inserted.

The UE is in AUTOMATIC network selection mode.

[Initial conditions]

SS

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of LTE PDSCH and PDCCH before measurement are specified in Annex C.2 of TS 36.521-1.

GTI

Configurations of NR PDSCH and PDCCH before measurement are specified in Annex C.2 of TS 38.521-1.

Test Environment: Normal, as defined in TS 36.508 & TS 38.508-1 clause 4.1 for LTE & NR respectively.

Frequencies to be tested: Mid Range, as defined in TS 36.508 & TS 38.508-1 for LTE & NR respectively.

- 1. Connect the LTE SS, the faders and AWGN noise sources to the UE antenna connectors as shown in TS 36.508 Annex A, Figure A.10 for antenna configuration 2x2.
- 2. Connect the NR SS, the faders and AWGN noise sources to the UE antenna connectors as shown in TS 38.508-1 Annex A, Figure A.3.2.1.5 for antenna configuration 4x4.
- 3. Connect an application server to the IP output of the SS configured with a UDP server.
- 4. LTE Downlink signals are initially set up according to Annex C.0, C.1 and Annex C.3.2 in TS 36.521-1 and uplink signals according to Annex H.1 and H.3.2 in TS 36.521-1.
- 5. NR Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.1 in TS 38.521-1 and uplink signals according to Annex G.1 and G.3.2 in TS 38.521-1.
- 6. LTE Propogation conditions are set according to Annex B.0 in TS 36.521-1.
- 7. NR Propagation conditions are set according to Annex B.0 in TS 38.521-1.

UE

UE is powered off

10.6.2.5 Test procedure

PREAMBLE

- 1. SS Activates E-UTRAN Cell A configures the corresponding Master Information Block and System Information Block broadcast.
- 2. SS transmits LTE PDSCH via PDCCH DCI format 2A for C_RNTI to transmit the DL data using the transport format and transport block size.
- Set the parameters of the bandwidth, the propagation condition, the correlation matrix, EN-DC Configuration, Special subframe configuration, antenna configuration according to Table 10.6.2.4-1, Table 10.6.2.4-2, as appropriate. Transmission mode is set to TM3.
- SNR is set according to Table 10.6.2.4-1. Here SNR = Cell_power / Noc, in which Cell_power(EPRE) is a constant of -68dBm/15kHz, following the definition of TS 36.508 & 38.508.

MAIN BODY

- 5. The UE is powered ON.
- UE performs a Registration procedure on E-UTRAN Cell A to register for PS services. The UE establishes the default EPS bearer during the registration according to TS 36.508 subclause 4.5.2(steps 1-16).
- 7. SS Activates NR Cell B.
- 8. The SS transmits an RRC Connection Reconfiguration message containing information regarding NR Cell B and to establish MCG & SCG.

- 9. UE transmit an RRC Connection Reconfiguration Complete message to SS.
- 10. Using the UDP client, begin UDP download and upload with the application server for [90] seconds and record Throughput result.
- 11. Repeat step 10 for one more iteration.
- 12. Calculate the average throughput at the application layer on the downlink and uplink channel during the file transfer over all iterations.
- 13. Switch Off UE, UE initiates a Detach procedure.

POSTAMBLE

14. Deactivate Cell A and Cell B.

	Message Sequence				Verdict		
Step	U-S	Layer	Message	Specific Contents			
	÷	RRC	The SS Activates E-UTRAN Cell A configures the				
1			corresponding Master Information Block and				
			System Information Block broadcast				
2	SS		SS transmits PDSCH via PDCCH DCI format 2A for				
			C_RNTI				
	SS		Set the parameters of the bandwidth,				
3			propagation condition, correlation matrix,				
5			EN-DC Configuration, Special subframe				
			configuration and antenna configuration	configuration and antenna configuration			
4			Cell Power is set				
5	UE		Switch On UE				
6	\leftrightarrow	NAS	UE performs Registration procedure on	UE performs Registration procedure on			
0		RRC	E-UTRAN Cell A				
7			The SS activates NR Cell B				
8	÷	RRC	SS sends RRC Connection Reconfiguration				
0			message				
9	\rightarrow	RRC	The UE transmits RRC Connection		PASS		
5			Reconfiguration Complete message				
10			Using UDP Client begin UDP Download		PASS		
11			Repeat Step 10				
12	SS		Calculate Average Throughput		PASS		
13			Switch Off UE	AT Command			
14	SS		Deactivate Cell A & Cell B				

Table 10.6.2.5-1: Message Sequence

10.6.2.6 Expected Result

- 1. Calculate and record the average uplink UDP throughput and downlink UDP throughput.
- 2. Calculate and record the average downlink throughput in MAC layer in SCG cell and MCG cell respectively

- 3. Calculate and record the average uplink throughput in MAC layer in SCG cell and MCG cell respectively
- 4. Count and record the overall number of ACK and NACK/DTX on the PUSCH/PUCCH during the test interval.
- 5. The average downlink and uplink throughput at the application layer shall meet or exceed the value in following table.

Band Combination	Test Point	Expected DL	Expected DL MAC	Expected DL MAC
		UDP Throughput	Throughput in MCG	Throughput in SCG
B3+n41	NSA-1	FFS	FFS	FFS
B3+n41	NSA-2	FFS	FFS	FFS
B3+n41	NSA-3	FFS	FFS	FFS

Table 10.6.2.6-1: DL Expected Result for EN-DC FDD LTE Band + NR Band

Table 10.6.2.6-2: UL Expected Result for EN-DC FDD LTE Band + NR Band

Band Combination	Test Point	Expected UL	Expected UL MAC	Expected UL MAC
		UDP Throughput	Throughput in MCG	Throughput in SCG
B3+n41	NSA-1	FFS	FFS	FFS
B3+n41	NSA-2	FFS	FFS	FFS
B3+n41	NSA-3	FFS	FFS	FFS

10.6.3 Bidirectional Throughput under static channel on SCG, UL 64QAM, NSA

10.6.3.1 Test Purpose

To measure the UE application layer Bidirectional performance while downloading & uploading simultaneously UDP based data in Conducted, Static Channel, NSA Option3, 100 MHz BW, Full Resource Allocation, DL NR 256QAM+4*4 MIMO, UL NR 64QAM,data transmission on SCG

10.6.3.2 Reference specification

3GPP TS 36.331, 3GPP TS 36.508, 3GPP TS 36.521-1, 3GPP TS 38.331, 3GPP TS 38.508, 3GPP TS 38.521-1

10.6.3.3 Applicability

This test applies to Type 1 and Type 3 devices as described in clause 4.2.

10.6.3.4 Test conditions

[SS configuration] E-UTRAN Cell A, NR-RAN Cell B

E-UTRAN Cell A,

Cell Id=01 TAC = 01 MCC = 460 MNC = 00 EARFCN= f1 rootSequenceIndex = 0 DL Modulation / Coding = 10 **RB** Allocation UL= Full RB Allocation DL = Full simultaneousAckNackAndCQI = TRUE CPConfig = UL: Normal CP/DL: Normal CP

NR-RAN Cell B, Cell Id=02 TAC = 01 NR-ARFCN= f1 rootSequenceIndex = 0 DL Modulation / Coding = 27 UL Modulation / Coding = 28 RB Allocation UL= Full RB Allocation DL = Full simultaneousAckNackAndCQI = TRUE enable4x4MIMO = TRUE enableDL256QAM = TRUE enableUL64QAM = TRUE CPConfig = UL: Normal CP/DL: Normal CP

[Common conditions]

Common conditions include a set of test points the UE needs to be tested in and the common test parameters for each transmission mode.

Table 10.6.3.4-1: Test Points Configuration			
Test Point	Propagation Conditions	Correlation Matrices	
NSA-1	Static	N/A	

	Table 10.6.3.4-2: Test Parameters for Testing				
Parameter		Unit	Value		
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-3		
allocation	$ ho_{\scriptscriptstyle B}$	dB	-3(Note 1)		
LTE N_{oc} at antenna port		dBm/15kHz	-98		
NR N_{oc} at antenna port		dBm/30kHz	-98		
Reporting mode			PUCCH 1-0		
Note 1: $P_B = 1$	P =1				

Table 10.6.3.4-2. Test Parameters for Testing

[UE configuration]

The test USIM shall be inserted.

The UE is in AUTOMATIC network selection mode.

[Initial conditions]

SS

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of LTE PDSCH and PDCCH before measurement are specified in Annex C.2 of TS 36.521-1.

Configurations of NR PDSCH and PDCCH before measurement are specified in Annex C.2 of TS 38.521-1.

Test Environment: Normal, as defined in TS 36.508 & TS 38.508-1 clause 4.1 for LTE & NR respectively.

- 8. Connect the LTE SS, the faders and AWGN noise sources to the UE antenna connectors as shown in TS 36.508 Annex A, Figure A.10 for antenna configuration 2x2.
- 9. Connect the NR SS, the faders and AWGN noise sources to the UE antenna connectors as shown in TS 36.508-1 Annex A, Figure A.3.2.1.5 for antenna configuration 4x4.
- 10. Connect an application server to the IP output of the SS configured with a UDP server.
- LTE Downlink signals are initially set up according to Annex C.0, C.1 and Annex C.3.2 in TS 36.521-1 and uplink signals according to Annex H.1 and H.3.2 in TS 36.521-1.
- 12. NR Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.1 in TS 38.521-1 and uplink signals according to Annex G.1 and G.3.2 in TS 38.521-1.
- 13. LTE Propogation conditions are set according to Annex B.0 in TS 36.521-1.
- 14. NR Propagation conditions are set according to Annex B.0 in TS 38.521-1.
- UE

UE is powered off

10.6.3.5 Test procedure

PREAMBLE

- 1. SS Activates E-UTRAN Cell A configures the corresponding Master Information Block and System Information Block broadcast.
- 2. SS transmits LTE PDSCH via PDCCH DCI format 2A for C_RNTI to transmit the DL data using the transport format and transport block size.
- Set the parameters of the bandwidth, the propagation condition, the correlation matrix, EN-DC Configuration, Special subframe configuration, antenna configuration according to Table 10.6.1.4-1, Table 10.6.1.4-2, as appropriate. Transmission mode is set to TM3.
- SNR is set according to Table 10.6.1.4-1. Here SNR = Cell_power / Noc, in which Cell_power(EPRE) is a constant of -68dBm/15kHz, following the definition of TS 36.508 & 38.508.

MAIN BODY

- 5. The UE is powered ON.
- 6. UE performs a Registration procedure on E-UTRAN Cell A to register for PS services. The UE establishes the default EPS bearer during the registration according to TS 36.508 subclause 4.5.2(steps 1-16).
- 7. SS Activates NR Cell B.
- 8. The SS transmits an RRC Connection Reconfiguration message containing information regarding NR Cell B and to establish SCG.
- 9. UE transmit an RRC Connection Reconfiguration Complete message to SS.
- 10. Using the UDP client, begin UDP download from the application server for [90] seconds and record Throughput result.
- 11. Repeat step 10 for one more iteration.
- 12. Calculate the average throughput at the application layer on the downlink and uplink channel during the file transfer over all iterations.
- 13. Switch Off UE, UE initiates a Detach procedure.

POSTAMBLE

14. Deactivate Cell A and Cell B.

	Message Sequence				Verdict		
Step	U-S	Layer	Message	Specific Contents			
	÷	RRC	The SS Activates E-UTRAN Cell A configures the	The SS Activates E-UTRAN Cell A configures the			
1			corresponding Master Information Block and				
			System Information Block broadcast				
2	SS		SS transmits PDSCH via PDCCH DCI format 2A for				
			C_RNTI				
	SS		Set the parameters of the bandwidth,				
2			propagation condition, correlation matrix,				
3			EN-DC Configuration, Special subframe				
			configuration and antenna configuration				
4			Cell Power is set				
5	UE		Switch On UE				
6	\leftrightarrow	NAS	UE performs Registration procedure on		PASS		
6		RRC	E-UTRAN Cell A				
7			The SS activates NR Cell B				
0	← RRC	RRC	SS sends RRC Connection Reconfiguration				
8			message				
0	\rightarrow	RRC	The UE transmits RRC Connection		PASS		
9			Reconfiguration Complete message				
10			Using UDP Client begin UDP Download				
11			Repeat Step 10				

Table 10.6.3.5-1: Message Sequence

12	SS	Calculate Average Throughput	Calculate Average Throughput	
13		Switch Off UE	AT Command	
14	SS	Deactivate Cell A & Cell B		

10.6.3.6 Expected Result

- 1. Calculate and record the average uplink UDP throughput and downlink UDP throughput.
- 2. Calculate and record the average downlink throughput in MAC layer in SCG cell
- 3. Calculate and record the average uplink throughput in MAC layer in SCG cell
- 4. Count and record the overall number of ACK and NACK/DTX on the PUSCH/PUCCH during the test interval.
- 5. The average downlink and uplink throughput at the application layer shall meet or exceed the value in following table.

Table 10.6.3.6-1: DL Expected Result for EN-DC FDD LTE Band + NR Band

Band Combination	Expected DL UDP Throughput	Expected DL MAC Throughput in SCG
B3+n41	[1.7Gbps]	[1.7Gbps]

Table 10.6.3.6-2: UL Expected Result for EN-DC FDD LTE Band + NR Band

Band Combination	Expected UL UDP Throughput	Expected UL MAC Throughput in SCG	
B3+n41	[95Mbps]	[95Mbps]	

10.6.4 Bidirectional Throughput under static channel on SCG, UL 256QAM, NSA

10.6.4.1 Test Purpose

To measure the UE application layer Bidirectional performance while downloading & uploading simultaneously UDP based data in Conducted, Static Channel, NSA Option3, 100 MHz BW, Full Resource Allocation, DL NR 256QAM+4*4 MIMO, UL NR 256QAM,data transmission on SCG

10.6.4.2 Reference specification

3GPP TS 36.331, 3GPP TS 36.508, 3GPP TS 36.521-1, 3GPP TS 38.331, 3GPP TS 38.508, 3GPP TS 38.521-1

10.6.4.3 Applicability

This test applies to Type 1 and Type 3 devices as described in clause 4.2.

10.6.4.4 Test conditions

[SS configuration] E-UTRAN Cell A, NR-RAN Cell B

E-UTRAN Cell A,

Cell Id=01 TAC = 01 MCC = 460 MNC = 00 EARFCN= f1 rootSequenceIndex = 0 DL Modulation / Coding = 10 **RB** Allocation UL= Full RB Allocation DL = Full simultaneousAckNackAndCQI = TRUE CPConfig = UL: Normal CP/DL: Normal CP

NR-RAN Cell B, Cell Id=02 TAC = 01 NR-ARFCN= f1 rootSequenceIndex = 0 DL Modulation / Coding = 27 UL Modulation / Coding = 27 RB Allocation UL= Full RB Allocation DL = Full simultaneousAckNackAndCQI = TRUE enable4x4MIMO = TRUE enableDL256QAM = TRUE enableUL256QAM = TRUE CPConfig = UL: Normal CP/DL: Normal CP

[Common conditions]

Common conditions include a set of test points the UE needs to be tested in and the common test parameters for each transmission mode.

Test Point	Propagation Conditions	Correlation Matrices
NSA-1	Static	N/A

Parameter		Unit	Value
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-3
allocation	$ ho_{\scriptscriptstyle B}$	dB	-3(Note 1)
LTE N_{oc} at antenna port		dBm/15kHz	-98
NR N_{oc} at antenna port		dBm/30kHz	-98
Reporting mode			PUCCH 1-0
Note 1: $P_B = 1$			

Static	

Table 10.6.4.4-1: Test Points Configuration

Table 10.6.4.4-2. Test Parameters for Testing

[UE configuration]

The test USIM shall be inserted.

The UE is in AUTOMATIC network selection mode.

[Initial conditions]

SS

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of LTE PDSCH and PDCCH before measurement are specified in Annex C.2 of TS 36.521-1.

Configurations of NR PDSCH and PDCCH before measurement are specified in Annex C.2 of TS 38.521-1.

Test Environment: Normal, as defined in TS 36.508 & TS 38.508-1 clause 4.1 for LTE & NR respectively.

- 15. Connect the LTE SS, the faders and AWGN noise sources to the UE antenna connectors as shown in TS 36.508 Annex A, Figure A.10 for antenna configuration 2x2.
- 16. Connect the NR SS, the faders and AWGN noise sources to the UE antenna connectors as shown in TS 36.508-1 Annex A, Figure A.3.2.1.5 for antenna configuration 4x4.
- 17. Connect an application server to the IP output of the SS configured with a UDP server.
- LTE Downlink signals are initially set up according to Annex C.0, C.1 and Annex C.3.2 in TS 36.521-1 and uplink signals according to Annex H.1 and H.3.2 in TS 36.521-1.
- 19. NR Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.1 in TS 38.521-1 and uplink signals according to Annex G.1 and G.3.2 in TS 38.521-1.
- 20. LTE Propogation conditions are set according to Annex B.0 in TS 36.521-1.
- 21. NR Propagation conditions are set according to Annex B.0 in TS 38.521-1.
- UE

UE is powered off

10.6.4.5 Test procedure

PREAMBLE

- 15. SS Activates E-UTRAN Cell A configures the corresponding Master Information Block and System Information Block broadcast.
- 16. SS transmits LTE PDSCH via PDCCH DCI format 2A for C_RNTI to transmit the DL data using the transport format and transport block size.
- Set the parameters of the bandwidth, the propagation condition, the correlation matrix, EN-DC Configuration, Special subframe configuration, antenna configuration according to Table 10.6.1.4-1, Table 10.6.1.4-2, as appropriate. Transmission mode is set to TM3.
- SNR is set according to Table 10.6.1.4-1. Here SNR = Cell_power / Noc, in which Cell_power(EPRE) is a constant of -68dBm/15kHz, following the definition of TS 36.508 & 38.508.

MAIN BODY

- 19. The UE is powered ON.
- 20. UE performs a Registration procedure on E-UTRAN Cell A to register for PS services. The UE establishes the default EPS bearer during the registration according to TS 36.508 subclause 4.5.2(steps 1-16).
- 21. SS Activates NR Cell B.
- 22. The SS transmits an RRC Connection Reconfiguration message containing information regarding NR Cell B and to establish SCG.
- 23. UE transmit an RRC Connection Reconfiguration Complete message to SS.
- 24. Using the UDP client, begin UDP download from the application server for [90] seconds and record Throughput result.
- 25. Repeat step 10 for one more iteration.
- 26. Calculate the average throughput at the application layer on the downlink and uplink channel during the file transfer over all iterations.
- 27. Switch Off UE, UE initiates a Detach procedure.

POSTAMBLE

28. Deactivate Cell A and Cell B.

Stop			Message Sequence		Verdict
Step	U-S	U-S Layer Message		Specific Contents	
	←	RRC	The SS Activates E-UTRAN Cell A		
1			configures the corresponding Master		
1			Information Block and System		
			Information Block broadcast		
2	SS		SS transmits PDSCH via PDCCH DCI format		
			2A for C_RNTI		
	SS		Set the parameters of the bandwidth,		
3			propagation condition, correlation matrix,		
5			EN-DC Configuration, Special subframe		
			configuration and antenna configuration		
4			Cell Power is set		
5	UE		Switch On UE	AT Command	
6	\leftrightarrow	NAS	UE performs Registration procedure on		PASS
0		RRC	E-UTRAN Cell A		
7			The SS activates NR Cell B		
0	÷	RRC	SS sends RRC Connection Reconfiguration		
8			message		
9	\rightarrow	RRC	The UE transmits RRC Connection		PASS
9	9 Reconfiguration Complete message		Reconfiguration Complete message		
10			Using UDP Client begin UDP Download	PASS	
11			Repeat Step 10		

Table 10.6.4.5-1: Message Sequence

12	SS	Calculate Average Throughput		PASS
13		Switch Off UE	AT Command	
14	SS	Deactivate Cell A & Cell B		

10.6.4.6 Expected Result

- 1. Calculate and record the average uplink UDP throughput and downlink UDP throughput.
- 2. Calculate and record the average downlink throughput in MAC layer in SCG cell
- 3. Calculate and record the average uplink throughput in MAC layer in SCG cell
- 4. Count and record the overall number of ACK and NACK/DTX on the PUSCH/PUCCH during the test interval.
- 5. The average downlink and uplink throughput at the application layer shall meet or exceed the value in following table.

Table 10.6.4.6-1: DL Expected Result for EN-DC FDD LTE Band + NR Band

Band Combination	Expected DL UDP Throughput	Expected DL MAC Throughput in SCG
B3_n41	[1.7Gbps]	[1.7Gbps]

Table 10.6.4.6-2: UL Expected Result for EN-DC FDD LTE Band + NR Band

Band Combination	Expected UL UDP Throughput	Expected UL MAC Throughput in SCG
B3_n41	[125Mbps]	[125Mbps]

10.6.5 Bidirectional Throughput under fading channel on SCG, NSA

10.6.5.1 Test Purpose

To measure the UE application layer Bidirectional performance while downloading & uploading simultaneously UDP based data in Conducted, Static Channel, NSA Option3, 100 MHz BW, Full Resource Allocation, dynamic scheduling based on channel condition, data transmission on SCG

10.6.5.2 Reference specification

3GPP TS 36.331, 3GPP TS 36.508, 3GPP TS 36.521-1, 3GPP TS 38.331, 3GPP TS 38.508, 3GPP TS 38.521-1

10.6.5.3 Applicability

This test applies to Type 1 and Type 3 devices as described in clause 4.2..

10.6.5.4 Test conditions

[SS configuration] E-UTRAN Cell A, NR-RAN Cell B

E-UTRAN Cell A,

Cell Id=01 TAC = 01 MCC = 460 MNC = 00 EARFCN= f1 rootSequenceIndex = 0 RB Allocation UL= Full RB Allocation DL = Full simultaneousAckNackAndCQI = TRUE CPConfig = UL: Normal CP/DL: Normal CP

NR-RAN Cell B, Cell Id=02 TAC = 01 NR-ARFCN= f1 rootSequenceIndex = 0 RB Allocation UL= Full RB Allocation DL = Full simultaneousAckNackAndCQI = TRUE CPConfig = UL: Normal CP/DL: Normal CP

[Common conditions]

Common conditions include a set of test points the UE needs to be tested in and the common test parameters for each transmission mode.

Test Point	Propagation	Correlation
	Conditions	Matrices
NSA-1	LTE Fading Profile :	Low
	EPA5 , NR Fading	
	Profile : TDLA30	
NSA-2	LTE Fading Profile :	Low
	EPA5 , NR Fading	
	Profile : TDLB100	
NSA-3	LTE Fading Profile :	Low
	EVA5 , NR Fading	
	Profile : TDLC300	

Table 10.6.5.4-1: Test Points Configuration

Parameter		Unit	Value
Downlink power ρ_A		dB	-3
allocation	$ ho_{\scriptscriptstyle B}$	dB	-3(Note 1)

LTE N_{oc} at antenna port	dBm/15kHz	-98
NR N_{oc} at antenna port	dBm/30kHz	-98
Reporting mode		PUCCH 1-0
Note 1: $P_B = 1$		

[UE configuration]

The test USIM shall be inserted.

The UE is in AUTOMATIC network selection mode.

[Initial conditions]

SS

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of LTE PDSCH and PDCCH before measurement are specified in Annex C.2 of TS 36.521-1.

Configurations of NR PDSCH and PDCCH before measurement are specified in Annex C.2 of TS 38.521-1.

Test Environment: Normal, as defined in TS 36.508 & TS 38.508-1 clause 4.1 for LTE & NR respectively.

Frequencies to be tested: Mid Range, as defined in TS 36.508 & TS 38.508-1 for LTE & NR respectively.

- 8. Connect the LTE SS, the faders and AWGN noise sources to the UE antenna connectors as shown in TS 36.508 Annex A, Figure A.10 for antenna configuration 2x2.
- 9. Connect the NR SS, the faders and AWGN noise sources to the UE antenna connectors as shown in TS 38.508-1 Annex A, Figure A.3.2.1.5 for antenna configuration 4x4.
- 10. Connect an application server to the IP output of the SS configured with a UDP server.
- 11. LTE Downlink signals are initially set up according to Annex C.0, C.1 and Annex C.3.2 in TS 36.521-1 and uplink signals according to Annex H.1 and H.3.2 in TS 36.521-1.
- 12. NR Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.1 in TS 38.521-1 and uplink signals according to Annex G.1 and G.3.2 in TS 38.521-1.
- 13. LTE Propogation conditions are set according to Annex B.0 in TS 36.521-1.
- 14. NR Propagation conditions are set according to Annex B.0 in TS 38.521-1.

UE

UE is powered off

10.6.5.5 Test procedure

PREAMBLE

- 15. SS Activates E-UTRAN Cell A configures the corresponding Master Information Block and System Information Block broadcast.
- 16. SS transmits LTE PDSCH via PDCCH DCI format 2A for C_RNTI to transmit the DL data using the transport format and transport block size.
- Set the parameters of the bandwidth, the propagation condition, the correlation matrix, EN-DC Configuration, Special subframe configuration, antenna configuration according to Table 10.6.2.4-1, Table 10.6.2.4-2, as appropriate. Transmission mode is set to TM3.
- SNR is set according to Table 10.6.2.4-1. Here SNR = Cell_power / Noc, in which Cell_power(EPRE) is a constant of -68dBm/15kHz, following the definition of TS 36.508 & 38.508.

MAIN BODY

- 19. The UE is powered ON.
- 20. UE performs a Registration procedure on E-UTRAN Cell A to register for PS services. The UE establishes the default EPS bearer during the registration according to TS 36.508 subclause 4.5.2(steps 1-16).
- 21. SS Activates NR Cell B.
- 22. The SS transmits an RRC Connection Reconfiguration message containing information regarding NR Cell B and to establish SCG.
- 23. UE transmit an RRC Connection Reconfiguration Complete message to SS.
- 24. Using the UDP client, begin UDP download and upload with the application server for [90] seconds and record Throughput result.
- 25. Repeat step 10 for one more iteration.
- 26. Calculate the average throughput at the application layer on the downlink and uplink channel during the file transfer over all iterations.
- 27. Switch Off UE, UE initiates a Detach procedure.

POSTAMBLE

28. Deactivate Cell A and Cell B.

			Message Sequence		Verdict
Step	U-S	Lavor	Layer Message	Specific	
	0-3	Layer		Contents	
	÷	RRC	The SS Activates E-UTRAN Cell A configures the		
1			corresponding Master Information Block and		
			System Information Block broadcast		
2	SS		SS transmits PDSCH via PDCCH DCI format 2A		
			for C_RNTI		
	SS Set the parameters of the bandwidth,				
3			propagation condition, correlation matrix,		
5			EN-DC Configuration, Special subframe		
			configuration and antenna configuration		
4			Cell Power is set		

Table 10.6.5.5-1: Message Sequence

GTI 5G Function and Performance Test Specification v4.2 – September 2021

5	UE		Switch On UE	AT Command	
6	$\leftarrow \rightarrow$ NAS UE performs Registration procedure on			PASS	
6		RRC	E-UTRAN Cell A		
7			The SS activates NR Cell B		
0	8 KRC SS sends RRC Connection Reconfiguration message				
ŏ			message		
9	\rightarrow	RRC	The UE transmits RRC Connection		PASS
9			Reconfiguration Complete message		
10			Using UDP Client begin UDP Download	PASS	
11			Repeat Step 10		
12	SS		Calculate Average Throughput	PASS	
13			Switch Off UE	AT Command	
14	SS		Deactivate Cell A & Cell B		

10.6.5.6 Expected Result

- 6. Calculate and record the average uplink UDP throughput and downlink UDP throughput.
- 7. Calculate and record the average downlink throughput in MAC layer in SCG cell
- 8. Calculate and record the average uplink throughput in MAC layer in SCG cell
- 9. Count and record the overall number of ACK and NACK/DTX on the PUSCH/PUCCH during the test interval.
- 10. The average downlink and uplink throughput at the application layer shall meet or exceed the value in following table.

Band Combination	Test Point	Expected DL Expected D				
		UDP Throughput	Throughput in SCG			
B3+n41	NSA-1	FFS	FFS			
B3+n41	NSA-2	FFS	FFS			
B3+n41	NSA-3	FFS	FFS			

Table 10.6.5.6-1: DL Expected Result for EN-DC FDD LTE Band + NR Band

Table 10.6.5.6-2: UL Expected Result for EN-DC FDD LTE Band + NR B	and
Table 10.0.5.0-2. Of Expected Result for EN-DCT DD FIE Dand + NR B	anu

Band Combination	Test Point	Expected UL UDP	Expected UL MAC
		Throughput	Throughput in SCG
B3+n41	NSA-1	FFS	FFS
B3+n41	NSA-2	FFS	FFS
B3+n41	NSA-3	FFS	FFS

11 Latency

- **11.1 Latency Basic Tests**
- 11.1.1 Control Plane Latency Basic Test

11.1.1.1 Test Purpose

Calculate the latency for different signaling messages exchange between SS and UE

11.1.1.2 Reference specification

TS 38.304, TS 38.331, TS 38.300

11.1.1.3 Applicability

This test applies to the device that supports SA or SA+NSA.

11.1.1.4 Test conditions

[SS configuration] Cell A is a NR Cell. Cell A supports only SA

NR Cell A Cell Id=01 TAC = 01 MCC = 460 MNC = 00 NR Band = n41 NR-ARFCN= f1 Bandwidth = 100 MHz SS/PBCH SSS EPRE = -125 dBm/30kHz

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in SA mode.

[Initial conditions]

SS

NR Cell A is not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

11.1.1.5 Test procedure

Table 5.1.1.5-1: Time of cell power level and parameter changes

Time	NR Cell A	Remark
то	-75	

- 1. Activate NR Cell A.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 11.1.5-1.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure on Cell A (see 38.508, Table 4.5.2.2-2 till Step 20a1).

MAIN BODY

- 5. SS initiates paging message to UE
- 6. UE initiates the Rach Procedure to start the service request procedure
- 7. Calculte the time taken between the Rach Request to Msg4
- 8. SS transmits RRC Setup message to UE
- 9. UE sends RRC Setup Complete with Service Request NAS message
- 10. SS sends the Access stratum Security Mode Command to the UE
- 11. UE responds with AS Security Mode Complete to the SS
- 12. Calculate the time taken between Security Mode Command and Security Mode Complete
- 13. SS Transmits RRC Reconfiguration to establish SRB2 and DRB with a Service accept NAS message
- 14. UE sends RRC Reconfiguration Complete to the SS
- 15. The RRC connection is released by the SS. The UE enters Registered, Idle Mode
- 16. Repeat Steps 5 to 15 for 4 times(on 4th iteration skip 15th step for initiating Deregistration POSTAMBLE step)
- 17. Calculate the average time taken at step 7 and step 12

POSTAMBLE

- 18. The SS initiates a Deregitration procedure.
- 19. The SS initiates a RRC release procedure.
- 20. Deactivate NR Cell A.

Step			Message Sequence		Verdict
	U-S	Layer	Message	Specific Contents]
			Connect the power consumption tester to		
			the UE		
1	÷	RRC	Activate NR Cell A.		
2			SS configures the initial power according to		
			T0 in Table 11.1.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure (see		PASS
	÷	RRC	38.508, Table 4.5.2.2-2 till Step 20a1).		
5	÷	RRC	Paging		
6	\rightarrow	RRC/	Rach Procedure to start the Service Request		PASS
	÷	MAC	Procedure till msg4		

Table 5.1.1.5-2: Message Sequence

Ι.,

11. .

7			Calculate the time taken between Rach	
			Request to Msg4	
8	~	RRC	RRCSetup	
9	\rightarrow	NAS	RRCSetupComplete with Service Request NAS	
		RRC	message	
10	÷	RRC	AS Security Mode Command	
11	\rightarrow	RRC	AS Security Mode Complete	
12			Calculate the time taken between Step 10	
			and Step 11	
13	~	NAS	RRCReconfiguration with Service Accept NAS	
		RRC	message	
14	\rightarrow	RRC	RRCReconfigurationComplete	PASS
15	←	RRC	RRCRelease	
16			Repeat Steps 5 to Step 15 for 4 times(on 4 th	
			iteration skip Step 15)	
17			Calculate the average time taken at Step 7	
			and Step 12	
18	\rightarrow	NAS	SS initiates a Deregitration procedure.	PASS
	←			
19	←	RRC	SS initiates a RRC release procedure.	
20			Deactivate NR Cell A.	

11.1.1.6 Expected Result

The Average time taken for RACH procedure should be less than [TBD]ms. The Average time taken for RRC Signaling message pair should be less than [TBD]ms.

11.1.2 User Plane Latency – Basic Test

11.1.2.1 Test Purpose

Calculate the latency of User plane data exchange between SS and UE

11.1.2.2 Reference specification

TS 38.304, TS 38.331, TS 38.300

11.1.2.3 Applicability

This test applies to the device that supports SA or SA+NSA.

11.1.2.4 Test conditions

[SS configuration]

Cell A is a NR Cell. Cell A supports only SA

NR Cell A Cell Id=01 TAC = 01 MCC = 460 MNC = 00 NR Band = n41 NR-ARFCN= f1 Bandwidth = 100 MHz SS/PBCH SSS EPRE = -125 dBm/30kHz

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in SA mode.

[Initial conditions]

SS

NR Cell A is not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

11.1.2.5 Test procedure

Table 5.1.1.55-1: Time of cell	power level	and parameter	changes
	power rever	and parameter	chunges

Time	NR Cell A	Remark
то	-75	

PREAMBLE

- 1. Activate NR Cell A.The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 11.2.5-1.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure on Cell A (see 38.508, Table 4.5.2.2-2 till Step 18).

MAIN BODY

- 5. SS Transmits an ICMP Echo Request packet(PING) to the UE
- 6. UE replies with an ICMP Echo Reply packet to SS
- 7. SS calculates the RTT time it takes for ICMP Echo Request sending and Response reception

- 8. Repeat steps 5 to 7 for 10 times and calculate the average time taken for ICMP Echo Requese transmission and Response reception
- 9. Set the length of PING package to 32 bytes, repeat steps 5 to 8
- 10. Set the length of PING package to 1000 bytes, repeat steps 5 to 8
- 11. Set the length of PING package to 1500 bytes, repeat steps 5 to 8

POSTAMBLE

- 12. The SS initiates a Deregitration procedure.
- 13. The SS initiates a RRC release procedure.
- 14. Deactivate NR Cell A.

Step			Message Sequence		Verdict
	U-S	Layer	Message	Specific Contents	
			Connect the power consumption tester to		
			the UE		
1	÷	RRC	Activate NR Cell A.		
2			SS configures the initial power according to		
			T0 in Table 11.2.5-1.		
3		UE	Switch On UE	AT Command	
4	\rightarrow	NAS	UE performs the registration procedure (see		PASS
	÷	RRC	38.508, Table 4.5.2.2-2 till Step 18).		
5	÷		ICMP ECHO Request		
6	\rightarrow		ICMP ECHO Response		PASS
7			SS calculates the RTT of the PING		
8			Repeat steps 5 to 7 for 10 times and		
			calculates the average time taken		
9			Set the length of PING packets to 32 bytes,		
			repeat step 5 to 8		
10			Set the length of PING packets to 1000 bytes,		
			repeat step 5 to 8		
11			Set the length of PING packets to 1500 bytes,		
			repeat step 5 to 8		
12	\rightarrow	NAS	SS initiates a Deregitration procedure.		PASS
	÷				
13	÷	RRC	SS initiates a RRC release procedure.		
14			Deactivate NR Cell A.		

Table 5.1.1.5-2: Message Sequence

11.1.2.6 Expected Result

The RTT for the ICMP Echo Request and Response should be less than [TBD]ms

12 High Speed Train

13 Beam Management

13.1 Beam Determination – Beam change based on power level

13.1.1 Test Purpose

Verify that UE selects better power beam when serving beam power is reduced

13.1.2 Reference specification

TS 38.300, 38.331, 38.508

13.1.3 Applicability

This test applies to Type 2 devices as described in clause 4.2

13.1.4 Test conditions

[SS configuration] Cell A is a NR Cell. Cell A supports only SA

NR Cell A Cell Id=01 TAC = 01 MCC = 460 MNC = 00 NR-ARFCN= f1 Bandwidth = 100 MHz SS/PBCH SSS EPRE for Beam 1 = -125 dBm/30kHz SS/PBCH SSS EPRE for Beam 2 = -125 dBm/30kHz

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in SA mode.

[Initial conditions]

SS

NR Cell A is not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

13.1.5 Test procedure

Table 13.1.5-1: Time of cell power level and parameter changes

Time NR Cell A Beam 1 NR Cell A Beam 2 Remark

TO	-75	-98	
T1	-106	-78	

PREAMBLE

- 1. Activate NR Cell A. The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 13.1.5-1.
- 3. The UE is powered ON.
- 4. The UE performs the registration procedure on Cell A (see 38.508, Table 4.5.2.2-2 till Step 15).

MAIN BODY

- 5. Setup donwlink TCP session and verify that UE downloads data correctly on beam ID 1.
- 6. The SS Configures the cell power level according to T1 in table 13.1.5-1
- 7. Setup donwlink TCP session and SS configures the DL DCIs in beam ID 2
- 8. Verify that UE downloads data correctly on beam ID 2.

POSTAMBLE

- 9. The SS initiates a Deregitration procedure.
- 10. The SS initiates a RRC release procedure.
- 11. Deactivate NR Cell A.

13.1.6 Expected Result

UE should able to decode the DCI after beam change is initiated by the network

13.2 Beam Sweeping – Initial Access

13.2.1 Test Purpose

When multiple beam is configured and beam sweeping is happening, verify that UE ia able to select any one beam and attach to network.

13.2.2 Reference specification

TS 38.331, 38.300, 38.508

13.2.3 Applicability

This test applies to Type 2 devices as described in clause 4.2

13.2.4 Test conditions

[SS configuration] Cell A is a NR Cell. Cell A supports only SA

NR Cell A Cell Id=01 TAC = 01 MCC = 460 MNC = 00 NR-ARFCN= f1 SS/PBCH SSS EPRE for Beam 1 = -125 dBm/30kHz SS/PBCH SSS EPRE for Beam 2 = -125 dBm/30kHz SS/PBCH SSS EPRE for Beam 3 = -125 dBm/30kHz

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in SA mode.

[Initial conditions]

SS

NR Cell A is not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

13.2.5 Test procedure

Time	NR Cell A Beam 1	NR Cell A Beam 2	NR Cell A Beam	NR Cell A Beam 4	Remark
			3		
T0	-98	-75	-98	-98	
T1	-75	-98	-98	-98	
T2	-98	-98	-98	-75	

Table 13.2.5-1: Time of cell power level and parameter changes

PREAMBLE

- 1. Activate NR Cell A. The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to test conditions T0 in table 13.2.5-1 and Beam sweeping is on.
- 3. The UE is powered ON.

MAIN BODY

- 4. The UE performs the registration procedure on Cell A on Beam 2(see 38.508, Table 4.5.2.2-2 till Step 15).
- 5. Initiate ICMP PING request(4 requests) from SS and verify that PING is successful.
- 6. The SS initiates a Deregitration procedure.
- 7. The SS initiates a RRC release procedure.
- 8. The SS Configures the cell power level according to T1 in table 13.2.5-1

- 9. The UE is powered ON.
- 10. The UE performs the registration procedure on Cell A on Beam 1(see 38.508, Table 4.5.2.2-2 till Step 15).
- 11. Initiate ICMP PING request(4 requests) from SS and verify that PING is successful.
- 12. The SS initiates a Deregitration procedure.
- 13. The SS initiates a RRC release procedure.
- 14. The SS Configures the cell power level according to T2 in table 13.2.5-1
- 15. The UE is powered ON.
- 16. The UE performs the registration procedure on Cell A on Beam 4(see 38.508, Table 4.5.2.2-2 till Step 15).
- 17. Initiate ICMP PING request(4 requests) from SS and verify that PING is successful.

POSTAMBLE

- 18. The SS initiates a Deregitration procedure.
- 19. The SS initiates a RRC release procedure.
- 20. Deactivate NR Cell A.

13.2.6 Expected Result

When multiple beams present with different power level during initial attach, verify that UE performs registartion at better beam during initial sweep.

13.3 Beam Failure and Recovery

13.3.1 Test Purpose

Veirfy that UE is able to detect the beam failure and recover in same beam as instructed in BFR(Beam failure recovery) parameters

13.3.2 Reference specification

TS 38.300, 38.331, 38.508, 38.321

13.3.3 Applicability

This test applies to Type 2 devices as described in clause 4.2

13.3.4 Test conditions

[SS configuration] Cell A is a NR Cell. Cell A supports only SA

NR Cell A Cell Id=01 TAC = 01 MCC = 460 MNC = 00 NR-ARFCN= f1

Bandwidth = 100 MHz SS/PBCH SSS EPRE for Beam 1 = -125 dBm/30kHz beamFailureInstanceMaxCount for Beam1 = n10 beamFailureDetectionTimer for Beam1 = pbfd10

[UE configuration] The test UICC with USIM should be inserted The UE is in AUTOMATIC network selection mode. UE works in SA mode.

[Initial conditions]

SS

NR Cell A is not active

The test shall be performed under ideal radio conditions.

UE

UE is powered off

13.3.5 Test procedure

Table 13.3.5-1: Time of cell power level and	parameter changes

Time	NR Cell A Beam 1	Remark
T0	-75	
T1	OFF	

PREAMBLE

- 1. Activate NR Cell A. The SS configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 13.3.5-1.
- 3. The UE is powered ON.
- The UE performs the registration procedure on Cell A Beam1(see 38.508, Table 4.5.2.2-2 till Step 15) with RadioLinkMonitoringConfig included in RRC Reconfiguration to check the beam failure.

MAIN BODY

- 5. Setup donwlink TCP session and verify that UE downloads data correctly on beam ID 1.
- 6. The SS Configures the cell power level according to T1 in table 13.3.5-1
- 7. Verify that UE doesn't initiate RACH Proceudre for Beam Failure
- 8. The SS Configures the cell power level according to T0 in table 13.3.5-1 before 10 ms(before beamFailureDetectionTimer expiry)
- 9. Setup donwlink TCP session and verify that UE downloads data correctly on beam ID 1
- 10. Verify that UE downloads data correctly on beam ID 1.

POSTAMBLE

11. The SS initiates a Deregitration procedure.

- 12. The SS initiates a RRC release procedure.
- 13. Deactivate NR Cell A.

13.3.6 Expected Result

When Beam failure is not exceeding beamFailureDetectionTimer, verify that UE continue to do data transfer in same beam and doesn't initiate the RACH procedure for Beam failure and recovery.

14 NR Carrier Aggregation

14.1 Downlink NR Carrier Aggregation

14.1.1 Throughput with DL NR CA

14.1.1.1 DL Throughput under static channel, CA_n41C

14.1.1.1.1 Test Purpose

To measure the UE downlink throughput performance while downloading TCP based data in Conducted with NR Intra-band Contiguous CA in n41

14.1.1.1.2 Reference specification

3GPP TS 38.331, 3GPP TS 38.508, 3GPP TS 38.321

14.1.1.1.3 Applicability

This test applies to Type2 UEs supporting NR DL CA_n41C

14.1.1.1.4 Test conditions

[SS configuration] NR Cell A, PCell Cell Id=01 TAC = 01 MCC = 460 MNC = 00 Test Band=n41 Test Frequency= f1 DL Modulation / Coding = 27 DL RB Allocation = Full DL 4x4MIMO = TRUE DL 256QAM = TRUE absoluteFrequencySSB=513150

NR Cell B, SCell Cell Id=02 TAC = 01

MCC = 460 MNC = 00 Test Band=n41 Test Frequency= f5 DL Modulation / Coding = 27 DL RB Allocation = Full DL 4x4MIMO = TRUE DL 256QAM = TRUE absoluteFrequencySSB=528990 absoluteFrequencyPointA=523128

[Common conditions]

Common conditions include a set of test points the UE needs to be tested in and the common test parameters for each transmission mode.

Test Point	Propagation Conditions	Correlation Matrices
NR-1	Static	N/A

[UE configuration]

The test USIM shall be inserted.

The UE is in AUTOMATIC network selection mode.

[Initial conditions]

SS

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Test Environment: Normal, as defined in TS 38.508-1 clause 4.1.

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 Annex A, Figure A.3.1.1.3 and A.3.2 for NR CA.
- Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.1 in TS 38.521-1 and uplink signals according to Annex G.1 and G.3.2 in TS 38.521-1.

UE

UE is powered off

14.1.1.1.5 Test procedure

lable 14.1.1.1.5-1: Time of cell power level and parameter changes				
Time	Parameter	Unit	NR Cell A	NR Cell B
то	SS/PBCH, SSS EPRE		-75	Not Active
T1		dBm/SCS	-75	-75
T2			-75	-95

Table 14.1.1.1.5-1: Time of cell power level and parameter changes

PREAMBLE

- 1. SS Activates Cell A configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 14.1.1.1.5-1
- 3. Set the parameters of the propagation condition according to Table 14.1.1.1.4-1.

MAIN BODY

- 4. The UE is powered ON.
- 5. UE performs a Registration procedure on NR Cell A to register for PS services according to TS 38.508 subclause 4.5.2. UE is in state RRC_CONNECTED
- 6. SS activates Cell B and configures the cell power according to T1 in Table 14.1.1.1.5-1
- 7. SS transmits an RRCReconfiguration message including measConfig to setup intra NR measurement and reporting for event A2 and A4.
- 8. The UE sends MeasurementReport message to report event A4 with the measured RSRP value for Cell B
- 9. The SS transmits an RRCReconfiguration message including sCellToAddModList with SCell addition to configure Cell B as SCC. Refer to Table 14.1.1.1.5-2 for parameter configuration, and release measurement GAP configuration.
- 10. The UE transmits an RRCReconfigurationComplete message
- 11. SS activates SCC by sending the activation MAC CE. Refer TS 38.321 , clauses 5.9, 6.1.3.10.
- 12. Begin TCP download from the application server for 90 seconds and record TCP average throughput result. Verify data transmission on both PCC and SCC.
- 13. Stop downlink data transmission.
- 14. SS deactivates SCC by sending the deactivation MAC CE. Refer TS 38.321, clauses 5.9, 6.1.3.10).
- 15. Repeat step 11-14 for one more iteration.
- 16. Calculate the average TCP throughput on the downlink channel during the file transfer over all iterations.
- 17. The SS transmits an RRCReconfiguration message to add measurement GAP configuration.
- 18. SS configures the cell power according to T2 in Table 14.1.1.1.5-1
- 19. The UE sends MeasurementReport message to report event A2 with the measured RSRP value for NR Cell A and B
- 20. SS sends RRCReconfigurationmessage containing an sCellToReleaseList with SCell NR Cell B
- 21. UE transmit an RRCReconfigurationComplete

POSTAMBLE

- 22. Switch Off UE, UE initiates a Detach procedure.
- 23. Deactivate Cell A and Cell B.

Table 14.1.1.1.5-2: sCellToAddMod in RRCReconfiguration Message in step 9

Derivation Path: TS 38.331 [6], clause 6.3.2		
Information Element	Value/remark	Comments
sCellToAddModList {	1 entry	
sCellIndex	1	

sCellConfigCommon ::= SEQUENCE {		
physCellId	Physical cell id of Cell B	
downlinkConfigCommon ::= SEQUENCE {		
frequencyInfoDL::= SEQUENCE {		
absoluteFrequencySSB	528990	
frequencyBandList	n41	
absoluteFrequencyPointA	523128	
scs-SpecificCarrier{		
offsetToCarrier	0	
subcarrierSpacing	kHz30	
carrierBandwidth	162	60M
}		
}		
}		
uplinkConfigCommon	Not present	
ssb-periodicityServingCell	ms20	
dmrs-TypeA-Position	pos2	
ssbSubcarrierSpacing	kHz30	
tdd-UL-DL-ConfigurationCommon = {		
referenceSubcarrierSpacing	kHz30	
pattern1 {		
dl-UL-TransmissionPeriodicity	ms5	
nrofDownlinkSlots	7	DD DD DD DS UU
nrofDownlinkSymbols	6	DL : GP : UL = 6 : 4 : 4
nrofUplinkSlots	2	
nrofUplinkSymbols	4	
}		
}		
ss-PBCH-BlockPower	0	
}		
}		

14.1.1.1.6 Expected Result

Calculate and record the average throughput on TCP layer. The average downlink TCP throughput shall meet or exceed the value in following table.

Table	1/11	1 6-1.	Expected	Rocult
lable	: 14.1.1.	1.0-1.	Expected	nesuit

Test band	Expected DL TCP Throughput	
CA_n41C 100M+60M	[TBD]	

14.1.1.2 DL Throughput under static channel, CA_n41A-n28A

14.1.1.2.1 Test Purpose

To measure the UE downlink throughput performance while downloading TCP based data in Conducted with NR Inter-band CA between n41 and n28.

14.1.1.2.2 Reference specification

3GPP TS 38.331, 3GPP TS 38.508, 3GPP TS 38.321

14.1.1.2.3 Applicability

This test applies to Type2 UEs supporting NR DL CA_n41A-n28A

14.1.1.2.4 Test conditions

```
[SS configuration]
NR Cell A, PCell
Cell Id=01 TAC = 01
MCC = 460 MNC = 00
Test Band=n41
Test Frequency= f1
DL Modulation / Coding = 27
DL RB Allocation = Full
DL 4x4MIMO = TRUE
DL 256QAM = TRUE
absoluteFrequencySSB=513150
```

```
NR Cell B, SCell
Cell Id=02 TAC = 01
MCC = 460 MNC = 00
Test Band=n28
Test Frequency= f1
DL Modulation / Coding = 27
DL RB Allocation = Full
DL 2x2MIMO = TRUE
DL 256QAM = TRUE
absoluteFrequencySSB=154570
DL absoluteFrequencyPointA= 151720
```

[Common conditions]

Common conditions include a set of test points the UE needs to be tested in and the common test parameters for each transmission mode.

Table 14.1.1.2.4-1: Test Points Configuration

Test Point	Propagation Conditions	Correlation Matrices
------------	------------------------	----------------------

NR-1	Static	N/A

[UE configuration]

The test USIM shall be inserted.

The UE is in AUTOMATIC network selection mode.

[Initial conditions]

SS

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Test Environment: Normal, as defined in TS 38.508-1 clause 4.1.

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 Annex A, Figure A.3.1.1.3 and A.3.2 for NR CA.
- Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.1 in TS 38.521-1 and uplink signals according to Annex G.1 and G.3.2 in TS 38.521-1.

UE

UE is powered off

14.1.1.2.5 Test procedure

Time	Parameter	Unit	NR Cell A	NR Cell B
Т0			-75	Not Active
T1	SS/PBCH,	dBm/SCS	-75	-75
Т2	SSS EPRE		-75	-95

Table 14.1.1.2.5-1: Time of cell power level and parameter changes

PREAMBLE

- 1. SS Activates Cell A configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 14.1.1.2.5-1
- 3. Set the parameters of the propagation condition according to Table 14.1.1.2.4-1.

MAIN BODY

- 4. The UE is powered ON.
- 5. UE performs a Registration procedure on NR Cell A to register for PS services according to TS 38.508 subclause 4.5.2. UE is in state RRC_CONNECTED
- 6. SS activates Cell B and configures the cell power according to T1 in Table 14.1.1.2.5-1
- 7. SS transmits an RRCReconfiguration message including measConfig to setup intra NR measurement and reporting for event A2 and A4.
- 8. The UE sends MeasurementReport message to report event A4 with the measured RSRP value for Cell B

- 9. The SS transmits an RRCReconfiguration message including sCellToAddModList with SCell addition to configure Cell B as SCC. Refer to Table 14.1.1.2.5-2 for parameter configuration
- 10. The UE transmits an RRCReconfigurationComplete message
- 11. SS activates SCC by sending the activation MAC CE. Refer TS 38.321 , clauses 5.9, 6.1.3.10.
- 12. Begin TCP download from the application server for 90 seconds and record TCP average throughput result. Verify data transmission on both PCC and SCC.
- 13. Stop downlink data transmission.
- 14. SS deactivates SCC by sending the deactivation MAC CE. Refer TS 38.321, clauses 5.9, 6.1.3.10).
- 15. Repeat step 11-14 for one more iteration.
- 16. Calculate the average TCP throughput on the downlink channel during the file transfer over all iterations.
- 17. SS configures the cell power according to T2 in Table 14.1.1.2.5-1
- 18. The UE sends MeasurementReport message to report event A2 with the measured RSRP value for NR Cell A and B
- 19. SS sends RRCReconfigurationmessage containing an sCellToReleaseList with SCell NR Cell B
- 20. UE transmit an RRCReconfigurationComplete

POSTAMBLE

- 21. Switch Off UE, UE initiates a Detach procedure.
- 22. Deactivate Cell A and Cell B.

Derivation Path: TS 38.331 [6], clause 6.3.2		
Information Element	Value/remark	Comments
sCellToAddModList {	1 entry	
sCellIndex	1	
sCellConfigCommon ::= SEQUENCE {		
physCellId	Physical cell id of Cell B	
downlinkConfigCommon ::= SEQUENCE {		
frequencyInfoDL::= SEQUENCE {		
absoluteFrequencySSB	154570	
frequencyBandList	n28	
absoluteFrequencyPointA	151720	
scs-SpecificCarrier{		
offsetToCarrier	0	
subcarrierSpacing	kHz15	
carrierBandwidth	160	30M
}		
}		
}		
uplinkConfigCommon	Not present	
ssb-periodicityServingCell	ms20	
dmrs-TypeA-Position	pos2	

Table 14.1.1.2.5-2: sCellToAddMod in RRCReconfiguration Message in step 9

ssbSubcarrierSpacing	kHz15	
ss-PBCH-BlockPower	0	
}		
}		

14.1.1.2.6 Expected Result

Calculate and record the average throughput on TCP layer. The average downlink TCP throughput shall meet or exceed the value in following table.

Table 14	1126-3	: Expected	Result
	r. 1 . 1 . 2 . 0 J	. LAPCULU	nesure

Test band	Expected DL TCP Throughput				
CA_n41A-n28A 100M+30M	[TBD]				

14.1.1.3 DL Throughput under static channel, CA_n41A-n79A , Unaligned frame boundary

14.1.1.3.1 Test Purpose

To measure the UE downlink throughput performance while downloading TCP based data in Conducted with NR Inter-band CA between n41 and n79.

Verify UE support the unaligned frame boundary with slot alignment for R16 inter-band CA.

14.1.1.3.2 Reference specification

3GPP TS 38.331, 3GPP TS 38.508, 3GPP TS 38.321

14.1.1.3.3 Applicability

This test applies to Type2 UEs supporting NR DL CA_n41A-n79A

14.1.1.3.4 Test conditions

[SS configuration] NR Cell A, PCell Cell Id=01 TAC = 01 MCC = 460 MNC = 00 Test Band=n41 Test Frequency= f1 DL Modulation / Coding = 27 DL RB Allocation = Full DL 4x4MIMO = TRUE DL 256QAM = TRUE absoluteFrequencySSB=513150 absoluteFrequencyPointA=503172

NR Cell B, SCell Cell Id=02 TAC = 01 MCC = 460 MNC = 00 Test Band=n79 Test Frequency= f1 DL Modulation / Coding = 27 DL RB Allocation = Full DL 4x4MIMO = TRUE DL 256QAM = TRUE Frame Structure= DDDSU DDSUU Special Frame DL : GP : UL = 10 : 2 : 2 absoluteFrequencySSB= 721824 absoluteFrequencyPointA= 720048

The frame boundary of n41 Cell A and n79 Cell B are unaligned as indicated below. The slot boundary are aligned.

Cell A (n41)				D	D	D	D	D	D	D	S	U	U
Cell B (n79)	D	D	D	S	U	D	D	S	U	U			

[Common conditions]

Common conditions include a set of test points the UE needs to be tested in and the common test parameters for each transmission mode.

Test Point	Propagation Conditions	Correlation Matrices
NR-1	Static	N/A

[UE configuration]

The test USIM shall be inserted.

The UE is in AUTOMATIC network selection mode.

[Initial conditions]

SS

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Test Environment: Normal, as defined in TS 38.508-1 clause 4.1.

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 Annex A, Figure A.3.1.1.3 and A.3.2 for NR CA.
- Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.1 in TS 38.521-1 and uplink signals according to Annex G.1 and G.3.2 in TS 38.521-1.

UE

UE is powered off

14.1.1.3.5 Test procedure

				0
Time	Parameter	Unit	NR Cell A	NR Cell B
то			-75	Not Active
T1	SS/PBCH,	dBm/SCS	-75	-75
T2	SSS EPRE		-75	-95

Table 14.1.1.3.5-1: Time of cell power level and parameter changes

PREAMBLE

- 1. SS Activates Cell A configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 14.1.1.3.5-1
- 3. Set the parameters of the propagation condition according to Table 14.1.1.3.4-1.

MAIN BODY

- 4. The UE is powered ON.
- 5. UE performs a Registration procedure on NR Cell A to register for PS services according to TS 38.508 subclause 4.5.2. UE is in state RRC_CONNECTED
- 6. SS activates Cell B and configures the cell power according to T1 in Table 14.1.1.3.5-1
- 7. SS transmits an RRCReconfiguration message including measConfig to setup intra NR measurement and reporting for event A2 and A4.
- 8. The UE sends MeasurementReport message to report event A4 with the measured RSRP value for Cell B
- 9. The SS transmits an RRCReconfiguration message including sCellToAddModList with SCell addition to configure Cell B as SCC. Refer to Table 14.1.1.3.5-2 for parameter configuration
- 10. The UE transmits an RRCReconfigurationComplete message
- 11. SS activates SCC by sending the activation MAC CE. Refer TS 38.321, clauses 5.9, 6.1.3.10.
- 12. Begin TCP download from the application server for 90 seconds and record TCP average throughput result. Verify data transmission on both PCC and SCC.
- 13. Stop downlink data transmission.
- 14. SS deactivates SCC by sending the deactivation MAC CE. Refer TS 38.321, clauses 5.9, 6.1.3.10).
- 15. Repeat step 11-14 for one more iteration.
- 16. Calculate the average TCP throughput on the downlink channel during the file transfer over all iterations.
- 17. SS configures the cell power according to T2 in Table 14.1.1.3.5-1
- 18. The UE sends MeasurementReport message to report event A2 with the measured RSRP value for NR Cell A and B
- 19. SS sends RRCReconfigurationmessage containing an sCellToReleaseList with SCell NR Cell B
- 20. UE transmit an RRCReconfigurationComplete

POSTAMBLE

- 21. Switch Off UE, UE initiates a Detach procedure.
- 22. Deactivate Cell A and Cell B.

Table 14.1.1.3.5-2: sCellToAddMod in RRCReconfiguration Message in step 9

Derivation Path: TS 38.331 [6], clause 6.3.2	-	
Information Element	Value/remark	Comments
sCellToAddModList {	1 entry	
sCellIndex	1	
sCellConfigCommon ::= SEQUENCE {		
physCellId	Physical cell id of Cell B	
<pre>downlinkConfigCommon ::= SEQUENCE {</pre>		
frequencyInfoDL::= SEQUENCE {		
absoluteFrequencySSB	721824	
frequencyBandList	n79	
absoluteFrequencyPointA	720048	
scs-SpecificCarrier{		
offsetToCarrier	0	
subcarrierSpacing	kHz30	
carrierBandwidth	273	100M
}		
}		
}		
uplinkConfigCommon	Not present	
ssb-periodicityServingCell	ms20	
dmrs-TypeA-Position	pos2	
ssbSubcarrierSpacing	kHz30	
tdd-UL-DL-ConfigurationCommon = {		
referenceSubcarrierSpacing	kHz30	
pattern1 {		
dl-UL-TransmissionPeriodicity	ms2p5	2.5ms
nrofDownlinkSlots	3	DDDSU
nrofDownlinkSymbols	10	DL : GP : UL = 10 : 2 : 2
nrofUplinkSlots	1	
nrofUplinkSymbols	2	
}		
pattern2 {		
dl-UL-TransmissionPeriodicity	ms2p5	2.5ms
nrofDownlinkSlots	2	DDSUU
nrofDownlinkSymbols	10	DL : GP : UL = 10 : 2 : 2
nrofUplinkSlots	2	
nrofUplinkSymbols	2	
}		
}		

ss-PBCH-BlockPower	0	
}		
}		

14.1.1.3.6 Expected Result

Calculate and record the average throughput on TCP layer. The average downlink TCP throughput shall meet or exceed the value in following table.

Table 14.1.1.1.5-3: Expected Result

Test band	Expected DL TCP Throughput			
CA_n41A-n79A 100M+100M	[TBD]			

14.1.1.4 DL Throughput under static channel, CA_n41A-n79A, Aligned frame boundary

Note: This test case is not mandatory required.

The same as 14.1.1.3 except that n41 Cell A and n79 Cell B are frame boundary aligned with slot alignment as indicated below

Cell A (n41)	D	D	D	D	D	D	D	S	U	U
Cell B (n79)	D	D	D	S	U	D	D	S	U	U

14.1.2 Mobility

14.1.2.1 Intra-frequency Handover, PCell and SCell, CA_n41C

14.1.2.1.1 Test Purpose

Test to verify that UE could support intra-frequency handover with continuous downlink data transmission in NR Intra-band Contiguous CA

14.1.2.1.2 Reference specification

3GPP TS 38.331, 3GPP TS 38.508, 3GPP TS 38.321

14.1.2.1.3 Applicability

This test applies to Type2 UEs supporting NR DL CA_n41C

14.1.2.1.4 Test conditions

[SS configuration] NR Cell A, PCell Cell Id=01 TAC = 01 MCC = 460 MNC = 00 Test Band=n41 Test Frequency= f1

DL Modulation / Coding = 27 DL RB Allocation = Full DL 4x4MIMO = TRUE DL 256QAM = TRUE absoluteFrequencySSB=513150 absoluteFrequencyPointA=503172

NR Cell B, SCell Cell Id=02 TAC = 01 MCC = 460 MNC = 00 Test Band=n41 Test Frequency= f5 DL Modulation / Coding = 27 DL RB Allocation = Full DL 4x4MIMO = TRUE DL 256QAM = TRUE absoluteFrequencySSB=524910 absoluteFrequencyPointA=523170

NR Cell C, PCell Cell Id=03 TAC = 01 MCC = 460 MNC = 00 Test Band=n41 Test Frequency= f1 DL Modulation / Coding = 27 DL RB Allocation = Full DL 4x4MIMO = TRUE DL 256QAM = TRUE absoluteFrequencySSB=513150 absoluteFrequencyPointA=503172

NR Cell D, SCell Cell Id=04 TAC = 01 MCC = 460 MNC = 00 Test Band=n41 Test Frequency= f5 DL Modulation / Coding = 27 DL RB Allocation = Full DL 4x4MIMO = TRUE DL 256QAM = TRUE absoluteFrequencySSB=524910 absoluteFrequencyPointA=523170

[Common conditions]

Common conditions include a set of test points the UE needs to be tested in and the common test parameters for each transmission mode.

Table 14.1.1-1:	Test Points	Configuration

Test Point	Propagation Conditions	Correlation Matrices	
NR-1	Static	N/A	

[UE configuration]

The test USIM shall be inserted.

The UE is in AUTOMATIC network selection mode.

[Initial conditions]

SS

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Test Environment: Normal, as defined in TS 38.508-1 clause 4.1.

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 Annex A, Figure A.3.1.1.3 and A.3.2 for NR CA.
- 2. Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.1 in TS 38.521-1 and uplink signals according to Annex G.1 and G.3.2 in TS 38.521-1.

UE

UE is powered off

14.1.2.1.5 Test procedure

Table 14.1.2.1.5-1: Time of cell power level and parameter changes

Time	Parameter	Unit	NR Cell A	NR Cell B	NR Cell C	NR Cell D
то			-75	Not Active	Not Active	Not Active
T1	SS/PBCH,	dBm/SCS	-75	-75	Not Active	Not Active
T2	SSS EPRE	ubiii/SCS	-95	-95	-75	-75
Т3			-75	-75	-95	-95

PREAMBLE

- 1. SS Activates Cell A configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 14.1.2.1.5-1
- 3. The UE is powered ON.

MAIN BODY

4. UE performs a Registration procedure on NR Cell A to register for PS services according to TS 38.508 subclause 4.5.2. UE is in state RRC_CONNECTED

- 5. SS activates Cell B and configures the cell power according to T1 in Table 14.1.2.1.5-1
- 6. The SS transmits an RRCReconfiguration message including measConfig to setup intra NR measurement and reporting for event A2, A3 and A4.
- 7. The UE sends MeasurementReport message to report event A4 with the measured RSRP value for Cell B
- 8. The SS transmits an RRCReconfiguration message including sCellToAddModList with SCell addition to configure Cell B as SCC. Refer to Table 14.1.1.1.5-2 for parameter configuration
- 9. The UE transmits an RRCReconfigurationComplete message
- SS activates Cell B as SCC by sending the activation MAC CE. Refer TS 38.321, clauses 5.9, 6.1.3.10.
- 11. Begin TCP download from the application server for 60 seconds and record TCP average throughput result. Verify data transmission on both PCC and SCC.
- 12. SS configures the cell power according to T2 in Table 14.1.2.1.5-1
- 13. Verify that UE sends MeasurementReport message to report event A2 and A3 with the measured RSRP value for NR Cell A, Cell Band Cell C
- 14. The SS transmits an RRCReconfiguration message including a reconfigurationWithSync to change PCell to Cell C and sCellToReleaseList to release Cell B as the SCell. Refer to Table 14.1.2.1.5-2 for parameter configuration
- 15. Verify that UE sends RRCReconfigurationComplete message in Cell C to indicate the successful handover
- 16. Verify that UE sends MeasurementReport message in Cell C to report event A4 with the measured RSRP value for NR Cell D
- 17. The SS transmits an RRCReconfiguration message containing an sCellToAddModList with SCell Cell D. Refer to Table 14.1.2.1.5-3 for parameter configuration
- 18. Verify that UE sends RRCReconfigurationComplete
- SS activates Cell D as SCC by sending the activation MAC CE. Refer TS 38.321, clauses 5.9, 6.1.3.10
- 20. Verify the TCP data transmission is continued on Cell C and Cell D. Keep TCP download from the application server for 60 seconds and record TCP average throughput result.
- 21. SS configures the cell power according to T3 in Table 14.1.2.1.5-1
- 22. Verify that UE sends MeasurementReport message to report event A2 and A3 with the measured RSRP value for NR Cell C, Cell D and Cell A
- 23. The SS transmits an RRCReconfiguration message including a reconfigurationWithSync to change PCell to Cell A and sCellToReleaseList to release Cell D as the SCell. Refer to Table 14.1.2.1.5-2 for parameter configuration
- 24. Verify that UE sends RRCReconfigurationComplete message in Cell A to indicate the successful handover
- 25. Verify that UE sends MeasurementReport message in Cell A to report event A4 with the measured RSRP value for NR Cell B
- 26. The SS transmits an RRCReconfiguration message containing an sCellToAddModList with SCell Cell B. Refer to Table 14.1.2.1.5-3 for parameter configuration
- 27. Verify that UE sends RRCReconfigurationComplete
- SS activates Cell B as SCC by sending the activation MAC CE. Refer TS 38.321, clauses 5.9, 6.1.3.10

- 29. Verify the TCP data transmission is continued on Cell A and Cell B. Keep TCP download from the application server for 60 seconds and record TCP average throughput result.
- 30. Stop downlink data transmission.
- 31. SS sends RRCReconfigurationmessage containing an sCellToReleaseList with SCell NR Cell B
- 32. UE transmit an RRCReconfigurationComplete

POSTAMBLE

- 33. Switch Off UE, UE initiates a Detach procedure.
- 34. Deactivate Cell A , Cell B, Cell C and Cell D.

	accoming diation in step 14 and	d 5(cp 25
Derivation Path: TS 38.331 [6], clause 6.3.2		
Information Element	Value/remark	Comment
CellGroupConfig ::= SEQUENCE {		
spCellConfig SEQUENCE {		
reconfigurationWithSync SEQUENCE {		
spCellConfigCommon{		
physCellId	Physical Cell ID of Cell C	Step 14
	Physical Cell ID of Cell A	Step 23
}		
}		
}		
sCellToReleaseList SEQUENCE {	1 entry	
sCellIndex[1]	1	
}		
}		

Table 14.1.2.1.5-2: RRCReconfiguration in step 14 and step 23

Table 14.1.1.1.5-3: sCellToAddMod in RRCReconfiguration Message in step 17 and Step 26

Derivation Path: TS 38.331 [6], clause 6.3.2		
Information Element	Value/remark	Comments
sCellToAddModList {	1 entry	
sCellIndex	1	
sCellConfigCommon ::= SEQUENCE {		
physCellId	Physical cell id of Cell	Step 17
	D	
	Physical cell id of Cell B	Step 26
downlinkConfigCommon ::= SEQUENCE {		
frequencyInfoDL::= SEQUENCE {		
absoluteFrequencySSB	524910	
frequencyBandList	n41	
absoluteFrequencyPointA	523170	
scs-SpecificCarrier{		
offsetToCarrier	0	

subcarrierSpacing	kHz30	
carrierBandwidth	162	60M
}		
}		
}		
uplinkConfigCommon	Not present	
ssb-periodicityServingCell	ms20	
dmrs-TypeA-Position	pos2	
ssbSubcarrierSpacing	kHz30	
tdd-UL-DL-ConfigurationCommon = {		
referenceSubcarrierSpacing	kHz30	
pattern1 {		
dl-UL-TransmissionPeriodicity	ms5	
nrofDownlinkSlots	7	DD DD DD DS UU
nrofDownlinkSymbols	6	DL : GP : UL = 6 : 4 : 4
nrofUplinkSlots	2	
nrofUplinkSymbols	4	
}		
}		
ss-PBCH-BlockPower	0	
}		
}		

14.1.2.1.6 Expected Result

UE could support intra-frequency handover with continuous downlink data transmission and record the throughput before and after handover

Test band	Step	Expected DL TCP Throughput
CA_n41C 100M+60M	Step 11	[TBD]
	Step 20	[TBD]
	Step 29	[TBD]

14.1.2.2 Inter-frequency Handover, PCell and SCell, CA_n41C

14.1.2.2.1 Test Purpose

Test to verify that UE could support inter-frequency handover with continuous downlink data transmission in NR Intra-band contiguous CA

14.1.2.2.2 Reference specification

3GPP TS 38.331, 3GPP TS 38.508, 3GPP TS 38.321

14.1.2.2.3 Applicability

This test applies to Type2 UEs supporting NR DL CA_n41C

14.1.2.2.4 Test conditions

The same as 14.1.2.1.4 except the cell configuration as indicated below

[SS configuration] NR Cell A, PCell Cell Id=01 TAC = 01 MCC = 460 MNC = 00 Test Band=n41 Test Frequency= f1 DL Modulation / Coding = 27 DL RB Allocation = Full DL 4x4MIMO = TRUE DL 256QAM = TRUE absoluteFrequencySSB=513150

NR Cell B, SCell Cell Id=02 TAC = 01 MCC = 460 MNC = 00 Test Band=n41 Test Frequency= f5 DL Modulation / Coding = 27 DL RB Allocation = Full DL 4x4MIMO = TRUE DL 256QAM = TRUE absoluteFrequencySSB=524910 absoluteFrequencyPointA=523170

NR Cell C, PCell Cell Id=03 TAC = 01 MCC = 460 MNC = 00 Test Band=n41 Test Frequency= f1 DL Modulation / Coding = 27 DL RB Allocation = Full DL 4x4MIMO = TRUE DL 256QAM = TRUE absoluteFrequencySSB= 504990 absoluteFrequencyPointA= 503172

NR Cell D, SCell Cell Id=04 TAC = 01 MCC = 460 MNC = 00 Test Band=n41 Test Frequency= f5 DL Modulation / Coding = 27 DL RB Allocation = Full DL 4x4MIMO = TRUE DL 256QAM = TRUE absoluteFrequencySSB=528990 absoluteFrequencyPointA=523170

14.1.2.2.5 Test procedure

The same as 14.1.2.1.5 except the parameter configuration as indicated below

Derivation Path: TS 38.331 [6], clause 6.3.2		
Information Element	Value/remark	Comment
CellGroupConfig ::= SEQUENCE {		
spCellConfig SEQUENCE {		
reconfigurationWithSync SEQUENCE {		
spCellConfigCommon{		
physCellId	Physical Cell ID of Cell C	Step 14
	Physical Cell ID of Cell A	Step 23
downlinkConfigCommon {		
frequencyInfoDL::= SEQUENCE {		
absoluteFrequencySSB	504990	Step 14, Cell C
	513150	Step 23, Cell A
frequencyBandList	n41	
absoluteFrequencyPointA	503172	
scs-SpecificCarrier{		
offsetToCarrier	0	
subcarrierSpacing	kHz30	
carrierBandwidth	273	100M
}		
}		
}		
sCellToReleaseList SEQUENCE {	1 entry	
sCellIndex[1]	1	
}		
}		

Derivation Path: TS 38.331 [6], clause 6.3.2		
Information Element	Value/remark	Comments
sCellToAddModList {	1 entry	
sCellIndex	1	
sCellConfigCommon ::= SEQUENCE {		
physCellId	Physical cell id of Cell	Step 17
	D	
	Physical cell id of Cell B	Step 26
downlinkConfigCommon ::= SEQUENCE {		
frequencyInfoDL::= SEQUENCE {		
absoluteFrequencySSB	528990	Step 16, Cell D
	524910	Step 25, Cell B
frequencyBandList	n41	
absoluteFrequencyPointA	523170	
scs-SpecificCarrier{		
offsetToCarrier	0	
subcarrierSpacing	kHz30	
carrierBandwidth	162	60M
}		
}		
}		
uplinkConfigCommon	Not present	
ssb-periodicityServingCell	ms20	
dmrs-TypeA-Position	pos2	
ssbSubcarrierSpacing	kHz30	
tdd-UL-DL-ConfigurationCommon = {		
referenceSubcarrierSpacing	kHz30	
pattern1 {		
dl-UL-TransmissionPeriodicity	ms5	
nrofDownlinkSlots	7	DD DD DD DS UU
nrofDownlinkSymbols	6	DL : GP : UL = 6 : 4 : 4
nrofUplinkSlots	2	
nrofUplinkSymbols	4	
}		
}		
ss-PBCH-BlockPower	0	
}		
}		

Table 14.1.2.2.5-2: sCellToAddMod in RRCReconfiguration Message in step 17 and Step 26

14.1.2.2.6 Expected Result

UE could support intra-frequency handover with continuous downlink data transmission and record the throughput before and after handover

Table 14.1.1.1.5-3: Expected Result

Test band	Step	Expected DL TCP Throughput
CA_n41C 100M+60M	Step 11	[TBD]
	Step 20	[TBD]
	Step 29	[TBD]

14.1.2.3 Intra-frequency SCell Removal and Addition, CA_n41A-n79A

14.1.2.3.1 Test Purpose

Test to verify that UE could support intra-frequency SCell removal and addition with continuous downlink data transmission in NR Inter-band CA _n41A-n79A

14.1.2.3.2 Reference specification

3GPP TS 38.331, 3GPP TS 38.508, 3GPP TS 38.321

14.1.2.3.3 Applicability

This test applies to Type2 UEs supporting NR DL CA_n41A-n79A

14.1.2.3.4 Test conditions

```
[SS configuration]
NR Cell A, PCell
Cell Id=01 TAC = 01
MCC = 460 MNC = 00
Test Band=n41
Test Frequency= f1
DL Modulation / Coding = 27
DL RB Allocation = Full
DL 4x4MIMO = TRUE
DL 256QAM = TRUE
absoluteFrequencySSB=513150
absoluteFrequencyPointA=503172
```

NR Cell B, SCell Cell Id=02 TAC = 01 MCC = 460 MNC = 00 Test Band=n79 Test Frequency= f1 DL Modulation / Coding = 27 DL RB Allocation = Full

DL 4x4MIMO = TRUE DL 256QAM = TRUE Frame Structure= DDDSU DDSUU Special Frame DL : GP : UL = 10 : 2 : 2 absoluteFrequencySSB= 721824 absoluteFrequencyPointA= 720048

NR Cell C, SCell Cell Id=03 TAC = 01 MCC = 460 MNC = 00 Test Band=n79 Test Frequency= f1 DL Modulation / Coding = 27 DL RB Allocation = Full DL 4x4MIMO = TRUE DL 256QAM = TRUE Frame Structure= DDDSU DDSUU Special Frame DL : GP : UL = 10 : 2 : 2 absoluteFrequencySSB= 721824 absoluteFrequencyPointA= 720048

The frame boundary of n41 Cell A and n79 Cell B are unaligned as indicated below. The slot boundary are aligned.

Cell A (n41)				D	D	D	D	D	D	D	S	U	U
Cell B (n79)	D	D	D	S	U	D	D	S	U	U			

[Common conditions]

Common conditions include a set of test points the UE needs to be tested in and the common test parameters for each transmission mode.

Test Point	Propagation Conditions	Correlation Matrices
NR-1	Static	N/A

[UE configuration]

The test USIM shall be inserted.

The UE is in AUTOMATIC network selection mode.

[Initial conditions]

SS

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Test Environment: Normal, as defined in TS 38.508-1 clause 4.1.

1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 Annex A, Figure A.3.1.1.3 and A.3.2 for NR CA.

2. Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.1 in TS 38.521-1 and uplink signals according to Annex G.1 and G.3.2 in TS 38.521-1.

UE

UE is powered off

14.1.2.3.5 Test procedure

	Table 14.1.2.5.5 1. This of cell power level and parameter changes							
Time	Parameter	Unit	NR Cell A	NR Cell B	NR Cell C			
т0			-75	Not Active	Not Active			
T1	SS/PBCH,		-75	-75	Not Active			
T2	SSS EPRE	dBm/SCS	-75	-95	-75			
Т3			-75	-75	-95			

Table 14.1.2.3.5-1: Time of cell power level and parameter changes

PREAMBLE

- 1. SS Activates Cell A configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 14.1.2.3.5-1
- 3. The UE is powered ON.

MAIN BODY

- 4. UE performs a Registration procedure on NR Cell A to register for PS services according to TS 38.508 subclause 4.5.2. UE is in state RRC_CONNECTED
- 5. SS activates Cell B and configures the cell power according to T1 in Table 14.1.2.3.5-1
- 6. The SS transmits an RRCReconfiguration message including measConfig to setup intra NR measurement and reporting for event A2, A3 and A4.
- 7. The UE sends MeasurementReport message to report event A4 with the measured RSRP value for Cell B
- 8. The SS transmits an RRCReconfiguration message including sCellToAddModList with SCell addition to configure Cell B as SCC. Refer to Table 14.1.1.3.5-2 for parameter configuration
- 9. The UE transmits an RRCReconfigurationComplete message
- 10. SS activates Cell B as SCC by sending the activation MAC CE. Refer TS 38.321, clauses 5.9, 6.1.3.10.
- 11. Begin TCP download from the application server for 60 seconds and record TCP average throughput result. Verify data transmission on both PCC and SCC.
- 12. SS configures the cell power according to T2 in Table 14.1.2.3.5-1
- 13. Verify tht UE sends MeasurementReport message to report event A2 and A4 with the measured RSRP value for NR Cell A, Cell B and Cell C
- 14. The SS transmits an RRCReconfiguration message including sCellToReleaseList to release Cell B as the SCell an sCellToAddModList to add Cell C as the SCell. Refer to Table 14.1.2.3.5-2 for parameter configuration

- 15. Verify that UE sends RRCReconfigurationComplete message in Cell A
- 16. SS activates Cell C as SCC by sending the activation MAC CE. Refer TS 38.321, clauses 5.9, 6.1.3.10
- 17. Verify the TCP data transmission is continued on Cell A and Cell C. Keep TCP download from the application server for 60 seconds and record TCP average throughput result.
- 18. SS configures the cell power according to T3 in Table 14.1.2.3.5-1
- 19. Verify that UE sends MeasurementReport message to report event A2 and A4 with the measured RSRP value for NR Cell A, Cell C and Cell B
- 20. The SS transmits an RRCReconfiguration message including sCellToReleaseList to release Cell C as the SCell an sCellToAddModList to add Cell B as the SCell. Refer to Table 14.1.2.3.5-2 for parameter configuration
- 21. Verify that UE sends RRCReconfigurationComplete message in Cell A
- 22. SS activates Cell B as SCC by sending the activation MAC CE. Refer TS 38.321, clauses 5.9, 6.1.3.10
- 23. Verify the TCP data transmission is continued on Cell A and Cell B. Keep TCP download from the application server for 60 seconds and record TCP average throughput result.
- 24. Stop downlink data transmission.
- 25. SS sends RRCReconfigurationmessage containing an sCellToReleaseList with SCell NR Cell B
- 26. UE transmit an RRCReconfigurationComplete

POSTAMBLE

- 27. Switch Off UE, UE initiates a Detach procedure.
- 28. Deactivate Cell A , Cell B and Cell C.

Derivation Path: TS 38.331 [6], clause 6.3.2		
Information Element	Value/remark	Comments
CellGroupConfig ::= SEQUENCE {		
sCellToReleaseList {	1 entry	
sCellIndex[1]	1	
}		
sCellToAddModList {	1 entry	
sCellIndex	2	
sCellConfigCommon ::= SEQUENCE {		
physCellId	Physical cell id of Cell C	Step 14
	Physical cell id of Cell B	Step 20
downlinkConfigCommon ::= SEQUENCE {		
frequencyInfoDL::= SEQUENCE {		
absoluteFrequencySSB	721824	
frequencyBandList	n79	
absoluteFrequencyPointA	720048	
scs-SpecificCarrier{		
offsetToCarrier	0	
subcarrierSpacing	kHz30	

Table 14.1.2.3.5-2: RRCReconfiguration Message in step 14 and Step 20

carrierBandwidth	273	
}		
}		
}		
uplinkConfigCommon	Not present	
ssb-periodicityServingCell	ms20	
dmrs-TypeA-Position	pos2	
ssbSubcarrierSpacing	kHz30	
tdd-UL-DL-ConfigurationCommon = {		
referenceSubcarrierSpacing	kHz30	
pattern1 {		
dl-UL-TransmissionPeriodicity	ms2p5	2.5ms
nrofDownlinkSlots	3	DDDSU
nrofDownlinkSymbols	10	DL : GP : UL = 10 : 2 : 2
nrofUplinkSlots	1	
nrofUplinkSymbols	2	
}		
pattern2 {		
dl-UL-TransmissionPeriodicity	ms2p5	2.5ms
nrofDownlinkSlots	2	DDSUU
nrofDownlinkSymbols	10	DL : GP : UL = 10 : 2 : 2
nrofUplinkSlots	2	
nrofUplinkSymbols	2	
}		
}		
ss-PBCH-BlockPower	0	
}		
}		
}		

14.1.2.3.6 Expected Result

UE could support intra-frequency SCell removal and additon with continuous downlink data transmission and record the throughput before and after handover

Test band	Step	Expected DL TCP Throughput				
CA_n41A+n79A	Step 11	[TBD]				
100M+100M	Step 17	[TBD]				
	Step 23	[TBD]				

Table 14.1.1.1.5-3: Expected Result

14.1.2.4 Inter-frequency SCell Removal and Addition, CA_n41A-n79A

14.1.2.4.1 Test Purpose

Test to verify that UE could support inter-frequency SCell removal and addition with continuous downlink data transmission in NR Inter-band CA _n41A-n79A

14.1.2.4.2 Reference specification

3GPP TS 38.331, 3GPP TS 38.508, 3GPP TS 38.321

14.1.2.4.3 Applicability

This test applies to Type2 UEs supporting NR DL CA_n41A-n79A

14.1.2.4.4 Test conditions

The same as 14.1.2.3.4 except the cell configuration as indicated below

[SS configuration] NR Cell A, PCell Cell Id=01 TAC = 01 MCC = 460 MNC = 00 Test Band=n41 Test Frequency= f1 DL Modulation / Coding = 27 DL RB Allocation = Full DL 4x4MIMO = TRUE DL 256QAM = TRUE absoluteFrequencySSB=513150 absoluteFrequencyPointA=503172

```
NR Cell B, SCell
Cell Id=02 TAC = 01
MCC = 460 MNC = 00
Test Band=n79
Test Frequency= f1
DL Modulation / Coding = 27
DL RB Allocation = Full
DL 4x4MIMO = TRUE
DL 256QAM = TRUE
Frame Structure= DDDSU DDSUU
Special Frame DL : GP : UL = 10 : 2 : 2
absoluteFrequencySSB= 721824
absoluteFrequencyPointA= 720048
```

NR Cell C, SCell Cell Id=03 TAC = 01

MCC = 460 MNC = 00 Test Band=n79 Test Frequency= f1 DL Modulation / Coding = 27 DL RB Allocation = Full DL 4x4MIMO = TRUE DL 256QAM = TRUE Frame Structure= DDDSU DDSUU Special Frame DL : GP : UL = 10 : 2 : 2 absoluteFrequencySSB= 723360 absoluteFrequencyPointA= 720048

The frame boundary of n41 Cell A and n79 Cell B are unaligned as indicated below. The slot boundary are aligned.

Cell A (n41)				D	D	D	D	D	D	D	S	U	U
Cell B (n79)	D	D	D	S	U	D	D	S	U	U			

14.1.2.4.5 Test procedure

The same as 14.1.2.3.5 except the parameter configuration as indicated below

Table 14.1.2.4.5-1: RRCReconfiguration	Message in step 14 and step 20
Tuble 14.1.2.4.5 1. Thene conjugatation	

Derivation Path: TS 38.331 [6], clause 6.3.2			
Information Element	Value/remark	Comments	
CellGroupConfig ::= SEQUENCE {			
sCellToReleaseList {	1 entry		
sCellIndex[1]	1		
}			
sCellToAddModList {	1 entry		
sCellIndex	1		
sCellConfigCommon ::= SEQUENCE {			
physCellId	Physical cell id of Cell C	Step 14	
	Physical cell id of Cell B	Step 20	
downlinkConfigCommon ::= SEQUENCE {			
frequencyInfoDL::= SEQUENCE {			
absoluteFrequencySSB	723360	Step 14, Cell C	
	721824	Step 20, Cell B	
frequencyBandList	n79		
absoluteFrequencyPointA	720048		
scs-SpecificCarrier{			
offsetToCarrier	0		

subcarrierSpacing	kHz30	
carrierBandwidth	273	
}		
}		
}		
uplinkConfigCommon	Not present	
ssb-periodicityServingCell	ms20	
dmrs-TypeA-Position	pos2	
ssbSubcarrierSpacing	kHz30	
tdd-UL-DL-ConfigurationCommon = {		
referenceSubcarrierSpacing	kHz30	
pattern1 {		
dl-UL-TransmissionPeriodicity	ms2p5	2.5ms
nrofDownlinkSlots	3	DDDSU
nrofDownlinkSymbols	10	DL : GP : UL = 10 : 2 : 2
nrofUplinkSlots	1	
nrofUplinkSymbols	2	
}		
pattern2 {		
dl-UL-TransmissionPeriodicity	ms2p5	2.5ms
nrofDownlinkSlots	2	DDSUU
nrofDownlinkSymbols	10	DL : GP : UL = 10 : 2 : 2
nrofUplinkSlots	2	
nrofUplinkSymbols	2	
}		
}		
ss-PBCH-BlockPower	0	
}		
}		
}		

14.1.2.4.6 Expected Result

UE could support inter-frequency SCell removal and additon with continuous downlink data transmission and record the throughput before and after handover

Test band	Step	Expected DL TCP Throughput
CA_n41A+n79A	Step 11	[TBD]
100M+100M	Step 17	[TBD]
	Step 23	[TBD]

Table 14.1.1.1.5-3: Expected Result

14.1.2.5 Intra-frequency Handover, PCell and SCell, CA_n41A-n79A

14.1.2.5.1 Test Purpose

Test to verify that UE could support intra-frequency handover with continuous downlink data transmission in NR Inter-band CA

14.1.2.5.2 Reference specification

3GPP TS 38.331, 3GPP TS 38.508, 3GPP TS 38.321

14.1.2.5.3 Applicability

This test applies to Type2 UEs supporting NR DL CA _n41A-n79A

14.1.2.5.4 Test conditions

[SS configuration] NR Cell A, PCell Cell Id=01 TAC = 01 MCC = 460 MNC = 00 Test Band=n41 Test Frequency= f1 DL Modulation / Coding = 27 DL RB Allocation = Full DL 4x4MIMO = TRUE DL 256QAM = TRUE absoluteFrequencySSB=513150 absoluteFrequencyPointA=503172

Cell Id=02 TAC = 01 MCC = 460 MNC = 00 Test Band=n79 Test Frequency= f1 DL Modulation / Coding = 27 DL RB Allocation = Full DL 4x4MIMO = TRUE DL 256QAM = TRUE Frame Structure= DDDSU DDSUU Special Frame DL : GP : UL = 10 : 2 : 2 absoluteFrequencySB= 721824 absoluteFrequencyPointA= 720048

NR Cell C, PCell Cell Id=03 TAC = 01 MCC = 460 MNC = 00 Test Band=n41

Test Frequency= f1 DL Modulation / Coding = 27 DL RB Allocation = Full DL 4x4MIMO = TRUE DL 256QAM = TRUE absoluteFrequencySSB=513150 absoluteFrequencyPointA=503172

```
NR Cell D, SCell
Cell Id=04 TAC = 01
MCC = 460 MNC = 00
Test Band=n79
Test Frequency= f1
DL Modulation / Coding = 27
DL RB Allocation = Full
DL 4x4MIMO = TRUE
DL 256QAM = TRUE
Frame Structure= DDDSU DDSUU
Special Frame DL : GP : UL = 10 : 2 : 2
absoluteFrequencySSB= 721824
absoluteFrequencyPointA= 720048
```

The frame boundary of n41 Cell A and n79 Cell B are unaligned as indicated below. The slot boundary are aligned.

Cell A (n41)				D	D	D	D	D	D	D	S	U	U
Cell B (n79)	D	D	D	S	U	D	D	S	U	U			

[Common conditions]

Common conditions include a set of test points the UE needs to be tested in and the common test parameters for each transmission mode.

Test Point	Propagation Conditions	Correlation Matrices	
NR-1	Static	/A	

[UE configuration]

The test USIM shall be inserted.

The UE is in AUTOMATIC network selection mode.

[Initial conditions]

SS

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Test Environment: Normal, as defined in TS 38.508-1 clause 4.1.

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 Annex A, Figure A.3.1.1.3 and A.3.2 for NR CA.
- 2. Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.1 in TS 38.521-1 and uplink signals according to Annex G.1 and G.3.2 in TS 38.521-1.

UE

UE is powered off

14.1.2.5.5 Test procedure

tuble 14.1.2.3.5 1. Thile of een power lever and parameter changes						
Time	Parameter	Unit	NR Cell A	NR Cell B	NR Cell C	NR Cell D
то			-75	Not Active	Not Active	Not Active
T1	SS/PBCH,		-75	-75	Not Active	Not Active
T2	SSS EPRE	dBm/SCS	-95	-95	-75	-75
Т3			-75	-75	-95	-95

Table 14.1.2.5.5-1: Time of cell power level and parameter changes

PREAMBLE

- 1. SS Activates Cell A configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 14.1.2.1.5-1
- 3. The UE is powered ON.

MAIN BODY

- 4. UE performs a Registration procedure on NR Cell A to register for PS services according to TS 38.508 subclause 4.5.2. UE is in state RRC_CONNECTED
- 5. SS activates Cell B and configures the cell power according to T1 in Table 14.1.2.1.5-1
- 6. The SS transmits an RRCReconfiguration message including measConfig to setup intra NR measurement and reporting for event A2, A3 and A4.
- 7. The UE sends MeasurementReport message to report event A4 with the measured RSRP value for Cell B
- 8. The SS transmits an RRCReconfiguration message including sCellToAddModList with SCell addition to configure Cell B as SCC. Refer to Table 14.1.1.1.5-2 for parameter configuration
- 9. The UE transmits an RRCReconfigurationComplete message
- SS activates Cell B as SCC by sending the activation MAC CE. Refer TS 38.321, clauses 5.9, 6.1.3.10.
- 11. Begin TCP download from the application server for 60 seconds and record TCP average throughput result. Verify data transmission on both PCC and SCC.
- 12. SS configures the cell power according to T2 in Table 14.1.2.5.5-1
- 13. Verify that UE sends MeasurementReport message to report event A2 and A3 with the measured RSRP value for NR Cell A, Cell Band Cell C
- 14. The SS transmits an RRCReconfiguration message including a reconfigurationWithSync to change PCell to Cell C and sCellToReleaseList to release Cell B as the SCell. Refer to Table

14.1.2.5.5-2 for parameter configuration

- 15. Verify that UE sends RRCReconfigurationComplete message in Cell C to indicate the successful handover
- 16. Verify that UE sends MeasurementReport message in Cell C to report event A4 with the measured RSRP value for NR Cell D
- 17. The SS transmits an RRCReconfiguration message containing an sCellToAddModList with SCell Cell D. Refer to Table 14.1.2.5.5-3 for parameter configuration
- 18. Verify that UE sends RRCReconfigurationComplete
- SS activates Cell D as SCC by sending the activation MAC CE. Refer TS 38.321, clauses 5.9, 6.1.3.10
- 20. Verify the TCP data transmission is continued on Cell C and Cell D. Keep TCP download from the application server for 60 seconds and record TCP average throughput result.
- 21. SS configures the cell power according to T3 in Table 14.1.2.5.5-1
- 22. Verify that UE sends MeasurementReport message to report event A2 and A3 with the measured RSRP value for NR Cell C, Cell D and Cell A
- 23. The SS transmits an RRCReconfiguration message including a reconfigurationWithSync to change PCell to Cell A and sCellToReleaseList to release Cell D as the SCell. Refer to Table 14.1.2.5.5-2 for parameter configuration
- 24. Verify that UE sends RRCReconfigurationComplete message in Cell A to indicate the successful handover
- 25. Verify that UE sends MeasurementReport message in Cell A to report event A4 with the measured RSRP value for NR Cell B
- 26. The SS transmits an RRCReconfiguration message containing an sCellToAddModList with SCell Cell B. Refer to Table 14.1.2.5.5-3 for parameter configuration
- 27. Verify that UE sends RRCReconfigurationComplete
- SS activates Cell B as SCC by sending the activation MAC CE. Refer TS 38.321, clauses 5.9, 6.1.3.10
- 29. Verify the TCP data transmission is continued on Cell A and Cell B. Keep TCP download from the application server for 60 seconds and record TCP average throughput result.
- 30. Stop downlink data transmission.
- 31. SS sends RRCReconfigurationmessage containing an sCellToReleaseList with SCell NR Cell B
- 32. UE transmit an RRCReconfigurationComplete

POSTAMBLE

- 33. Switch Off UE, UE initiates a Detach procedure.
- 34. Deactivate Cell A , Cell B, Cell C and Cell D.

Derivation Path: TS 38.331 [6], clause 6.3.2					
Information Element	Value/remark	Comment			
CellGroupConfig ::= SEQUENCE {					
spCellConfig SEQUENCE {					
reconfigurationWithSync SEQUENCE {					
spCellConfigCommon{					

Table 14.1.2.5.5-2: RRCReconfiguration in step 14 and step 23

physCellId	Physical Cell ID of Cell C	Step 14
	Physical Cell ID of Cell A	Step 23
}		
}		
}		
sCellToReleaseList SEQUENCE {	1 entry	
sCellIndex[1]	1	
}		
}		

Table 14.1.1.1.5-2: sCellToAddMod in RRCReconfiguration Message in step 17 and Step 26

Information Element	Value/remark	Comments
sCellToAddModList {	1 entry	
sCellIndex	1	
sCellConfigCommon ::= SEQUENCE {		
physCellId	Physical cell id of Cell	Step 17
	D	
	Physical cell id of Cell B	Step 26
downlinkConfigCommon ::= SEQUENCE {		
frequencyInfoDL::= SEQUENCE {		
absoluteFrequencySSB	721824	
frequencyBandList	n79	
absoluteFrequencyPointA	720048	
scs-SpecificCarrier{		
offsetToCarrier	0	
subcarrierSpacing	kHz30	
carrierBandwidth	273	
}		
}		
}		
uplinkConfigCommon	Not present	
ssb-periodicityServingCell	ms20	
dmrs-TypeA-Position	pos2	
ssbSubcarrierSpacing	kHz30	
tdd-UL-DL-ConfigurationCommon = {		
referenceSubcarrierSpacing	kHz30	
pattern1 {		
dl-UL-TransmissionPeriodicity	ms2p5	2.5ms
nrofDownlinkSlots	3	DDDSU
nrofDownlinkSymbols	10	DL : GP : UL = 10 : 2 : 2
nrofUplinkSlots	1	
nrofUplinkSymbols	2	

}		
pattern2 {		
dl-UL-TransmissionPeriodicity	ms2p5	2.5ms
nrofDownlinkSlots	2	DDSUU
nrofDownlinkSymbols	10	DL : GP : UL = 10 : 2 : 2
nrofUplinkSlots	2	
nrofUplinkSymbols	2	
}		
}		
ss-PBCH-BlockPower	0	
}		
}		

14.1.2.5.6 Expected Result

UE could support intra-frequency handover with continuous downlink data transmission and record the throughput before and after handover

Table 14.1.2.5.6-1: Expected	Result
------------------------------	--------

Test band	Step	Expected DL TCP Throughput
CA_n41A+n79A	Step 11	[TBD]
100M+100M	Step 20	[TBD]
	Step 29	[TBD]

14.1.2.6 Inter-frequency Handover, PCell and SCell, CA_n41A-n79A

14.1.2.6.1 Test Purpose

Test to verify that UE could support inter-frequency handover with continuous downlink data transmission in NR Inter-band CA

14.1.2.6.2 Reference specification

3GPP TS 38.331, 3GPP TS 38.508, 3GPP TS 38.321

14.1.2.6.3 Applicability

This test applies to Type2 UEs supporting NR DL CA _n41A-n79A

14.1.2.6.4 Test conditions

The same as 14.1.2.5.4 except the cell configuration as indicated below

[SS configuration] NR Cell A, PCell Cell Id=01 TAC = 01

MCC = 460 MNC = 00 Test Band=n41 Test Frequency= f1 DL Modulation / Coding = 27 DL RB Allocation = Full DL 4x4MIMO = TRUE DL 256QAM = TRUE absoluteFrequencySSB=513150 absoluteFrequencyPointA=503172

NR Cell B, SCell Cell Id=02 TAC = 01 MCC = 460 MNC = 00 Test Band=n79 Test Frequency= f1 DL Modulation / Coding = 27 DL RB Allocation = Full DL 4x4MIMO = TRUE DL 256QAM = TRUE Frame Structure= DDDSU DDSUU Special Frame DL : GP : UL = 10 : 2 : 2 absoluteFrequencySSB= 721824 absoluteFrequencyPointA= 720048

NR Cell C, PCell Cell Id=03 TAC = 01 MCC = 460 MNC = 00 Test Band=n41 Test Frequency= f1 DL Modulation / Coding = 27 DL RB Allocation = Full DL 4x4MIMO = TRUE DL 256QAM = TRUE absoluteFrequencySSB = 504990 absoluteFrequencyPointA=503172

NR Cell D, SCell Cell Id=04 TAC = 01 MCC = 460 MNC = 00 Test Band=n79 Test Frequency= f1 DL Modulation / Coding = 27 DL RB Allocation = Full DL 4x4MIMO = TRUE

DL 256QAM = TRUE Frame Structure= DDDSU DDSUU Special Frame DL : GP : UL = 10 : 2 : 2 absoluteFrequencySSB= 723360 absoluteFrequencyPointA= 720048

14.1.2.6.5 Test procedure

The same as 14.1.2.5.5 except the parameter configuration as indicated below

Derivation Path: TS 38.331 [6], clause 6.3.2		
Information Element	Value/remark	Comment
CellGroupConfig ::= SEQUENCE {		
spCellConfig SEQUENCE {		
reconfigurationWithSync SEQUENCE {		
spCellConfigCommon{		
physCellId	Physical Cell ID of Cell C	Step 14
	Physical Cell ID of Cell A	Step 23
downlinkConfigCommon {		
frequencyInfoDL::= SEQUENCE {		
absoluteFrequencySSB	504990	Step 14, Cell C
	513150	Step 23, Cell A
frequencyBandList	n41	
absoluteFrequencyPointA	503172	
scs-SpecificCarrier{		
offsetToCarrier	0	
subcarrierSpacing	kHz30	
carrierBandwidth	273	100M
}		
}		
}		
}		
}		
sCellToReleaseList SEQUENCE {	1 entry	
sCellIndex[1]	1	
}		
}		

Derivation Path: TS 38.331 [6], clause 6.3.2		
Information Element	Value/remark	Comments
sCellToAddModList {	1 entry	

sCellIndex	1	
sCellConfigCommon ::= SEQUENCE {		
physCellId	Physical cell id of Cell	Step 17
	D	
	Physical cell id of Cell B	Step 26
downlinkConfigCommon ::= SEQUENCE {		
frequencyInfoDL::= SEQUENCE {		
absoluteFrequencySSB	723360	Step 17, Cell D
	721824	Step 26, Cell B
frequencyBandList	n79	
absoluteFrequencyPointA	720048	
scs-SpecificCarrier{		
offsetToCarrier	0	
subcarrierSpacing	kHz30	
carrierBandwidth	273	
}		
}		
}		
uplinkConfigCommon	Not present	
ssb-periodicityServingCell	ms20	
dmrs-TypeA-Position	pos2	
ssbSubcarrierSpacing	kHz30	
tdd-UL-DL-ConfigurationCommon = {		
referenceSubcarrierSpacing	kHz30	
pattern1 {		
dl-UL-TransmissionPeriodicity	ms2p5	2.5ms
nrofDownlinkSlots	3	DDDSU
nrofDownlinkSymbols	10	DL : GP : UL = 10 : 2 : 2
nrofUplinkSlots	1	
nrofUplinkSymbols	2	
}		
pattern2 {		
dl-UL-TransmissionPeriodicity	ms2p5	2.5ms
nrofDownlinkSlots	2	DDSUU
nrofDownlinkSymbols	10	DL : GP : UL = 10 : 2 : 2
nrofUplinkSlots	2	
nrofUplinkSymbols	2	
}		
}		
ss-PBCH-BlockPower	0	
}		
}		

14.1.2.6.6 Expected Result

UE could support inter-frequency handover with continuous downlink data transmission and record the throughput before and after handover

Test band	Step	Expected DL TCP Throughput
CA_n41A+n79A	Step 11	[TBD]
100M+100M	Step 20	[TBD]
	Step 29	[TBD]

14.1.2.7 Intra-frequency PCell Handover, CA_n41A-n28A

14.1.2.7.1 Test Purpose

Test to verify that UE could support PCell intra-frequency handover meanwhile keep SCell unchanged with continuous downlink data transmission in NR Inter-band CA

14.1.2.7.2 Reference specification

3GPP TS 38.331, 3GPP TS 38.508, 3GPP TS 38.321

14.1.2.7.3 Applicability

This test applies to Type2 UEs supporting NR DL CA _n41A-n28A

14.1.2.7.4 Test conditions

[SS configuration] NR Cell A, PCell Cell Id=01 TAC = 01 MCC = 460 MNC = 00 Test Band=n41 Test Frequency= f1 DL Modulation / Coding = 27 DL RB Allocation = Full DL 4x4MIMO = TRUE DL 256QAM = TRUE absoluteFrequencySSB=513150 absoluteFrequencyPointA=503172

NR Cell B, SCell Cell Id=02 TAC = 01 MCC = 460 MNC = 00 Test Band=n28 Test Frequency= f1 DL Modulation / Coding = 27

DL RB Allocation = Full DL 2x2MIMO = TRUE DL 256QAM = TRUE absoluteFrequencySSB=154570 DL absoluteFrequencyPointA= 151720 UL absoluteFrequencyPointA= 140720

NR Cell C, PCell Cell Id=03 TAC = 01 MCC = 460 MNC = 00 Test Band=n41 Test Frequency= f1 DL Modulation / Coding = 27 DL RB Allocation = Full DL 4x4MIMO = TRUE DL 256QAM = TRUE absoluteFrequencySSB=513150 absoluteFrequencyPointA=503172

[Common conditions]

Common conditions include a set of test points the UE needs to be tested in and the common test parameters for each transmission mode.

Test Point	Point Propagation Conditions Correlation Matrices	
NR-1	Static	N/A

[UE configuration]

The test USIM shall be inserted.

The UE is in AUTOMATIC network selection mode.

[Initial conditions]

SS

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Test Environment: Normal, as defined in TS 38.508-1 clause 4.1.

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 Annex A, Figure A.3.1.1.3 and A.3.2 for NR CA.
- 2. Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.1 in TS 38.521-1 and uplink signals according to Annex G.1 and G.3.2 in TS 38.521-1.

UE

UE is powered off

14.1.2.7.5 Test procedure

Time	Parameter	Unit	NR Cell A	NR Cell B	NR Cell C
т0			-75	Not Active	Not Active
T1	SS/PBCH,		-75	-75	Not Active
T2	SSS EPRE	dBm/SCS	-95	-75	-75
Т3			-75	-75	-95

Table 14.1.2.7.5-1: Time of cell power level and parameter changes

PREAMBLE

- 1. SS Activates Cell A configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 14.1.2.1.5-1
- 3. The UE is powered ON.

MAIN BODY

- 4. UE performs a Registration procedure on NR Cell A to register for PS services according to TS 38.508 subclause 4.5.2. UE is in state RRC_CONNECTED
- 5. SS activates Cell B and configures the cell power according to T1 in Table 14.1.2.7.5-1
- 6. The SS transmits an RRCReconfiguration message including measConfig to setup intra NR measurement and reporting for event A2, A3 and A4.
- 7. The UE sends MeasurementReport message to report event A4 with the measured RSRP value for Cell B
- 8. The SS transmits an RRCReconfiguration message including sCellToAddModList with SCell addition to configure Cell B as SCC. Refer to Table 14.1.1.2.5-2 for parameter configuration
- 9. The UE transmits an RRCReconfigurationComplete message
- SS activates Cell B as SCC by sending the activation MAC CE. Refer TS 38.321, clauses 5.9, 6.1.3.10.
- 11. Begin TCP download from the application server for 60 seconds and record TCP average throughput result. Verify data transmission on both PCC and SCC.
- 12. SS configures the cell power according to T2 in Table 14.1.2.7.5-1
- 13. Verify tht UE sends MeasurementReport message to report event A3 with the measured RSRP value for NR Cell A and Cell B
- 14. The SS transmits an RRCReconfiguration message including a reconfigurationWithSync to change PCell to Cell C and sCellToAddModList to keep Cell B as SCell. Refer to Table 14.1.2.7.5-2 for parameter configuration
- 15. Verify that UE sends RRCReconfigurationComplete message in Cell C
- 16. Verify the TCP data transmission is continued on Cell C and Cell B. Keep TCP download from the application server for 60 seconds and record TCP average throughput result.
- 17. SS configures the cell power according to T3 in Table 14.1.2.5.5-1
- 18. Verify tht UE sends MeasurementReport message to report event A3 with the measured RSRP value for NR Cell A and Cell B
- 19. The SS transmits an RRCReconfiguration message including a reconfigurationWithSync to

change PCell to Cell A and sCellToAddModList to keep Cell B as SCell. Refer to Table 14.1.2.7.5-2 for parameter configuration

- 20. Verify that UE sends RRCReconfigurationComplete message in Cell A
- 21. Verify the TCP data transmission is continued on Cell A and Cell B. Keep TCP download from the application server for 60 seconds and record TCP average throughput result.
- 22. Stop downlink data transmission.
- 23. SS sends RRCReconfigurationmessage containing an sCellToReleaseList with SCell NR Cell B
- 24. UE transmit an RRCReconfigurationComplete

POSTAMBLE

- 25. Switch Off UE, UE initiates a Detach procedure.
- 26. Deactivate Cell A , Cell B and Cell C.

Derivation Path: TS 38.331 [6], clause 6.3.2		
Information Element	Value/remark	Comments
CellGroupConfig ::= SEQUENCE {		
spCellConfig SEQUENCE {		
reconfigurationWithSync SEQUENCE {		
spCellConfigCommon{		
physCellId	Physical Cell ID of Cell C	Step 14
	Physical Cell ID of Cell A	Step 19
}		
}		
sCellToAddModList {	1 entry	
sCellIndex	1	
sCellConfigCommon ::= SEQUENCE {		
physCellId	Physical cell id of Cell B	
downlinkConfigCommon ::= SEQUENCE {		
frequencyInfoDL::= SEQUENCE {		
absoluteFrequencySSB	154570	
frequencyBandList	n28	
absoluteFrequencyPointA	151720	
scs-SpecificCarrier{		
offsetToCarrier	0	
subcarrierSpacing	kHz15	
carrierBandwidth	160	30M
}		
}		
}		
uplinkConfigCommon	Not present	
ssb-periodicityServingCell	ms20	
dmrs-TypeA-Position	pos2	

Table 14.1.2.7.5-2: RRCReconfiguration in step14 and Step19

ssbSubcarrierSpacing	kHz15	
ss-PBCH-BlockPower	0	
}		
}		

14.1.2.7.6 Expected Result

UE could support PCell intra-frequency handover with continuous downlink data transmission and record the throughput before and after handover

Table 14.1.1.1.5-3: Expected Result

Test band	Step	Expected DL TCP Throughput
CA_n41A+n28A	Step 11	[TBD]
100M+30M	Step 16	[TBD]
	Step 21	[TBD]

14.1.2.8 Inter-frequency PCell Handover, CA_n41A-n28A

14.1.2.8.1 Test Purpose

Test to verify that UE could support PCell inter-frequency handover meanwhile keep SCell unchanged with continuous downlink data transmission in NR Inter-band CA

14.1.2.8.2 Reference specification

3GPP TS 38.331, 3GPP TS 38.508, 3GPP TS 38.321

14.1.2.8.3 Applicability

This test applies to Type2 UEs supporting NR DL CA_n41A-n28A

14.1.2.8.4 Test conditions

The same as 14.1.2.7.4 except the cell configuration as indicated below

[SS configuration] NR Cell A, PCell Cell Id=01 TAC = 01 MCC = 460 MNC = 00 Test Band=n41 Test Frequency= f1 DL Modulation / Coding = 27 DL RB Allocation = Full DL 4x4MIMO = TRUE DL 256QAM = TRUE absoluteFrequencySSB=513150

absoluteFrequencyPointA=503172

NR Cell B, SCell Cell Id=02 TAC = 01 MCC = 460 MNC = 00 Test Band=n28 Test Frequency= f1 DL Modulation / Coding = 27 DL RB Allocation = Full DL 2x2MIMO = TRUE DL 256QAM = TRUE absoluteFrequencySSB=154570 DL absoluteFrequencyPointA= 151720 UL absoluteFrequencyPointA= 140720

NR Cell C, PCell Cell Id=03 TAC = 01 MCC = 460 MNC = 00 Test Band=n41 Test Frequency= f1 DL Modulation / Coding = 27 DL RB Allocation = Full DL 4x4MIMO = TRUE DL 256QAM = TRUE absoluteFrequencySSB=504990 absoluteFrequencyPointA=503172

14.1.2.8.5 Test procedure

The same as 14.1.2.5.5 except the parameter configuration as indicated below

Derivation Path: TS 38.331 [6], clause 6.3.2		
Information Element	Value/remark	Comments
CellGroupConfig ::= SEQUENCE {		
spCellConfig SEQUENCE {		
reconfigurationWithSync SEQUENCE {		
spCellConfigCommon{		
physCellId	Physical Cell ID of Cell C	Step 14
	Physical Cell ID of Cell A	Step 19
downlinkConfigCommon {		
frequencyInfoDL::= SEQUENCE {		
absoluteFrequencySSB	504990	Step 14, Cell C

Table 14.1.2.7.5-1: RRCReconfiguration in step14 and Step19

	513150	Step 19, Cell A
frequencyBandList	n41	
absoluteFrequencyPointA	503172	
scs-SpecificCarrier{		
offsetToCarrier	0	
subcarrierSpacing	kHz30	
carrierBandwidth	273	100M
}		
}		
}		
}		
}		
sCellToAddModList {	1 entry	
sCellIndex	1	
sCellConfigCommon ::= SEQUENCE {		
physCellId	Physical cell id of Cell B	
downlinkConfigCommon ::= SEQUENCE {		
frequencyInfoDL::= SEQUENCE {		
absoluteFrequencySSB	154570	
frequencyBandList	n28	
absoluteFrequencyPointA	151720	
scs-SpecificCarrier{		
offsetToCarrier	0	
subcarrierSpacing	kHz15	
carrierBandwidth	160	30M
}		
}		
}		
uplinkConfigCommon	Not present	
ssb-periodicityServingCell	ms20	
dmrs-TypeA-Position	pos2	
ssbSubcarrierSpacing	kHz15	
ss-PBCH-BlockPower	0	
}		

14.1.2.8.6 Expected Result

UE could support PCell inter-frequency handover with continuous downlink data transmission and record the throughput before and after handover

Table 14.1.1.1.5-3: Expected Result

	•	
Test band	Step	Expected DL TCP Throughput
CA_n41A+n28A	Step 11	[TBD]

100M+30M	Step 16	[TBD]
	Step 21	[TBD]

14.1.2.9 Intra-frequency Handover, PCell and SCell, CA_n41A-n28A

14.1.2.9.1 Test Purpose

Test to verify that UE could support intra-frequency handover with continuous downlink data transmission in NR Inter-band CA

14.1.2.9.2 Reference specification

3GPP TS 38.331, 3GPP TS 38.508, 3GPP TS 38.321

14.1.2.9.3 Applicability

This test applies to Type2 UEs supporting NR DL CA _n41A-n28A

14.1.2.9.4 Test conditions

[SS configuration] NR Cell A, PCell Cell Id=01 TAC = 01 MCC = 460 MNC = 00 Test Band=n41 Test Frequency= f1 DL Modulation / Coding = 27 DL RB Allocation = Full DL 4x4MIMO = TRUE DL 256QAM = TRUE absoluteFrequencySSB=513150 absoluteFrequencyPointA=503172

NR Cell B, SCell Cell Id=02 TAC = 01 MCC = 460 MNC = 00 Test Band=n28 Test Frequency= f1 DL Modulation / Coding = 27 DL RB Allocation = Full DL 2x2MIMO = TRUE DL 256QAM = TRUE absoluteFrequencySSB=154570 DL absoluteFrequencyPointA= 151720 UL absoluteFrequencyPointA= 140720

NR Cell C, PCell Cell Id=03 TAC = 01 MCC = 460 MNC = 00 Test Band=n41 Test Frequency= f1 DL Modulation / Coding = 27 DL RB Allocation = Full DL 4x4MIMO = TRUE DL 256QAM = TRUE absoluteFrequencySSB=513150 absoluteFrequencyPointA=503172

NR Cell D, SCell Cell Id=04 TAC = 01 MCC = 460 MNC = 00 Test Band=n28 Test Frequency= f1 DL Modulation / Coding = 27 DL RB Allocation = Full DL 2x2MIMO = TRUE DL 256QAM = TRUE absoluteFrequencySSB=154570 DL absoluteFrequencyPointA= 151720 UL absoluteFrequencyPointA= 140720

[Common conditions]

Common conditions include a set of test points the UE needs to be tested in and the common test parameters for each transmission mode.

Test Point	Propagation Conditions	Correlation Matrices	
NR-1	Static	N/A	

[UE configuration]

The test USIM shall be inserted.

The UE is in AUTOMATIC network selection mode.

[Initial conditions]

SS

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Test Environment: Normal, as defined in TS 38.508-1 clause 4.1.

1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 Annex A, Figure A.3.1.1.3 and A.3.2 for NR CA.

2. Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.1 in TS 38.521-1 and uplink signals according to Annex G.1 and G.3.2 in TS 38.521-1.

UE

UE is powered off

14.1.2.9.5 Test procedure

Time	Parameter	Unit	NR Cell A	NR Cell B	NR Cell C	NR Cell D
то			-75	Not Active	Not Active	Not Active
T1	SS/PBCH,	dBm/SCS	-75	-75	Not Active	Not Active
T2	SSS EPRE		-95	-95	-75	-75
Т3			-75	-75	-95	-95

Table 14.1.2.5.5-1: Time of cell power level and parameter changes

PREAMBLE

- 1. SS Activates Cell A configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 14.1.2.1.5-1
- 3. The UE is powered ON.

MAIN BODY

- 4. UE performs a Registration procedure on NR Cell A to register for PS services according to TS 38.508 subclause 4.5.2. UE is in state RRC_CONNECTED
- 5. SS activates Cell B and configures the cell power according to T1 in Table 14.1.2.1.5-1
- 6. The SS transmits an RRCReconfiguration message including measConfig to setup intra NR measurement and reporting for event A2, A3 and A4.
- 7. The UE sends MeasurementReport message to report event A4 with the measured RSRP value for Cell B
- 8. The SS transmits an RRCReconfiguration message including sCellToAddModList with SCell addition to configure Cell B as SCC. Refer to Table 14.1.1.1.5-2 for parameter configuration
- 9. The UE transmits an RRCReconfigurationComplete message
- SS activates Cell B as SCC by sending the activation MAC CE. Refer TS 38.321, clauses 5.9, 6.1.3.10.
- 11. Begin TCP download from the application server for 60 seconds and record TCP average throughput result. Verify data transmission on both PCC and SCC.
- 12. SS configures the cell power according to T2 in Table 14.1.2.5.5-1
- 13. Verify that UE sends MeasurementReport message to report event A2 and A3 with the measured RSRP value for NR Cell A, Cell Band Cell C
- 14. The SS transmits an RRCReconfiguration message including a reconfigurationWithSync to change PCell to Cell C and sCellToReleaseList to release Cell B as the SCell. Refer to Table 14.1.2.5.5-2 for parameter configuration
- 15. Verify that UE sends RRCReconfigurationComplete message in Cell C to indicate the

successful handover

- 16. Verify that UE sends MeasurementReport message in Cell C to report event A4 with the measured RSRP value for NR Cell D
- 17. The SS transmits an RRCReconfiguration message containing an sCellToAddModList with SCell Cell D. Refer to Table 14.1.2.5.5-3 for parameter configuration
- 18. Verify that UE sends RRCReconfigurationComplete
- SS activates Cell D as SCC by sending the activation MAC CE. Refer TS 38.321, clauses 5.9, 6.1.3.10
- 20. Verify the TCP data transmission is continued on Cell C and Cell D. Keep TCP download from the application server for 60 seconds and record TCP average throughput result.
- 21. SS configures the cell power according to T3 in Table 14.1.2.5.5-1
- 22. Verify that UE sends MeasurementReport message to report event A2 and A3 with the measured RSRP value for NR Cell C, Cell D and Cell A
- 23. The SS transmits an RRCReconfiguration message including a reconfigurationWithSync to change PCell to Cell A and sCellToReleaseList to release Cell D as the SCell. Refer to Table 14.1.2.5.5-2 for parameter configuration
- 24. Verify that UE sends RRCReconfigurationComplete message in Cell A to indicate the successful handover
- 25. Verify that UE sends MeasurementReport message in Cell A to report event A4 with the measured RSRP value for NR Cell B
- 26. The SS transmits an RRCReconfiguration message containing an sCellToAddModList with SCell Cell B. Refer to Table 14.1.2.5.5-3 for parameter configuration
- 27. Verify that UE sends RRCReconfigurationComplete
- 28. SS activates Cell B as SCC by sending the activation MAC CE. Refer TS 38.321, clauses 5.9, 6.1.3.10
- 29. Verify the TCP data transmission is continued on Cell A and Cell B. Keep TCP download from the application server for 60 seconds and record TCP average throughput result.
- 30. Stop downlink data transmission.
- 31. SS sends RRCReconfigurationmessage containing an sCellToReleaseList with SCell NR Cell B
- 32. UE transmit an RRCReconfigurationComplete

POSTAMBLE

- 33. Switch Off UE, UE initiates a Detach procedure.
- 34. Deactivate Cell A , Cell B, Cell C and Cell D.

Derivation Path: TS 38.331 [6], clause 6.3.2				
Information Element	Value/remark	Comment		
CellGroupConfig ::= SEQUENCE {				
spCellConfig SEQUENCE {				
reconfigurationWithSync SEQUENCE {				
spCellConfigCommon{				
physCellId	Physical Cell ID of Cell C	Step 14		
	Physical Cell ID of Cell A	Step 23		

Table 14.1.2.5.5-2: RRCReconfiguration in step 14 and step 23

}		
}		
}		
sCellToReleaseList SEQUENCE {	1 entry	
sCellIndex[1]	1	
}		
}		

Table 14.1.1.1.5-2: *sCellToAddMod* in *RRCReconfiguration* Message in step 17 and Step 26

Derivation Path: TS 38.331 [6], clause 6.3.2		
Information Element	Value/remark	Comments
sCellToAddModList {	1 entry	
sCellIndex	1	
sCellConfigCommon ::= SEQUENCE {		
physCellId	Physical cell id of Cell	Step 17
	D	
	Physical cell id of Cell B	Step 26
downlinkConfigCommon ::= SEQUENCE {		
frequencyInfoDL::= SEQUENCE {		
absoluteFrequencySSB	154570	
frequencyBandList	n28	
absoluteFrequencyPointA	151720	
scs-SpecificCarrier{		
offsetToCarrier	0	
subcarrierSpacing	kHz15	
carrierBandwidth	160	
}		
}		
}		
uplinkConfigCommon	Not present	
ssb-periodicityServingCell	ms20	
dmrs-TypeA-Position	pos2	
ssbSubcarrierSpacing	kHz15	
ss-PBCH-BlockPower	0	
}		
}		

14.1.2.9.6 Expected Result

UE could support intra-frequency handover with continuous downlink data transmission and record the throughput before and after handover

Table 14.1.2.5.6-1: Expected Result

Test band Step Expected DL TCP Throughput			
	Test band	Step	Expected DL TCP Throughput

CA_n41A+n79A	Step 11	[TBD]
100M+100M	Step 20	[TBD]
	Step 29	[TBD]

14.2 Uplink NR Carrier Aggregation

14.2.1 Throughput with DL NR CA

14.2.1.1 UL Throughput under static channel, CA_n41C

14.2.1.1.1 Test Purpose

To measure the UE uplink throughput performance while uploading TCP based data in Conducted with NR Intra-band Contiguous CA in n41

14.2.1.1.2 Reference specification

3GPP TS 38.331, 3GPP TS 38.508, 3GPP TS 38.321

14.2.1.1.3 Applicability

This test applies to Type2 UEs supporting NR UL CA_n41C

14.2.1.1.4 Test conditions

[SS configuration] NR Cell A, PCell Cell Id=01 TAC = 01 MCC = 460 MNC = 00 Test Band=n41 Test Frequency= f1 UL Modulation / Coding = 27 UL RB Allocation = Full UL2x2MIMO = TRUE UL 256QAM = TRUE absoluteFrequencySSB=513150 absoluteFrequencyPointA=503172

NR Cell B, SCell Cell Id=02 TAC = 01 MCC = 460 MNC = 00 Test Band=n41 Test Frequency= f5 UL Modulation / Coding = 27 UL RB Allocation = Full UL 2x2MIMO = TRUE

UL 256QAM = TRUE absoluteFrequencySSB=528990 absoluteFrequencyPointA=523128

[Common conditions]

Common conditions include a set of test points the UE needs to be tested in and the common test parameters for each transmission mode.

Test Point	Propagation Conditions	Correlation Matrices
NR-1 Static		N/A

[UE configuration]

The test USIM shall be inserted.

The UE is in AUTOMATIC network selection mode.

[Initial conditions]

SS

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Test Environment: Normal, as defined in TS 38.508-1 clause 4.1.

1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 Annex A, Figure A.3.1.1.3 and A.3.2 for NR CA.

UE

UE is powered off

14.2.1.1.5 Test procedure

Table 14.1.1.1.5-1: Time of cell power level and parameter changes

Time	Parameter	Unit	NR Cell A	NR Cell B
т0			-75	Not Active
T1	SS/PBCH, SSS EPRE	dBm/SCS	-75	-75
T2	333 EPRE		-75	-95

PREAMBLE

- 1. SS Activates Cell A configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 14.1.1.1.5-1
- 3. Set the parameters of the propagation condition according to Table 14.1.1.1.4-1.

MAIN BODY

- 4. The UE is powered ON.
- 5. UE performs a Registration procedure on NR Cell A to register for PS services according to TS 38.508 subclause 4.5.2. UE is in state RRC_CONNECTED

- 6. SS activates Cell B and configures the cell power according to T1 in Table 14.1.1.1.5-1
- 7. SS transmits an RRCReconfiguration message including measConfig to setup intra NR measurement and reporting for event A2 and A4.
- 8. The UE sends MeasurementReport message to report event A4 with the measured RSRP value for Cell B
- 9. The SS transmits an RRCReconfiguration message including sCellToAddModList with SCell addition to configure Cell B as SCC. Refer to Table 14.1.1.1.5-2 for parameter configuration
- 10. The UE transmits an RRCReconfigurationComplete message
- 11. SS activates SCC by sending the activation MAC CE. Refer TS 38.321, clauses 5.9, 6.1.3.10.
- 12. Begin uplink TCP transmission for 90 seconds and record uplink TCP average throughput result. Verify data transmission on both PCC and SCC.
- 13. Stop uplink data transmission.
- 14. SS deactivates SCC by sending the deactivation MAC CE. Refer TS 38.321, clauses 5.9, 6.1.3.10).
- 15. Repeat step 11-14 for one more iteration.
- 16. Calculate the average TCP throughput on the uplink channel during the file transfer over all iterations.
- 17. SS configures the cell power according to T2 in Table 14.1.1.1.5-1
- 18. The UE sends MeasurementReport message to report event A2 with the measured RSRP value for NR Cell A and B
- 19. SS sends RRCReconfigurationmessage containing an sCellToReleaseList with SCell NR Cell B
- 20. UE transmit an RRCReconfigurationComplete

POSTAMBLE

- 21. Switch Off UE, UE initiates a Detach procedure.
- 22. Deactivate Cell A and Cell B.

Derivation Path: TS 38.331 [6], clause 6.3.2		
Information Element	Value/remark	Comments
sCellToAddModList {	1 entry	
sCellIndex	1	
sCellConfigCommon ::= SEQUENCE {		
physCellId	Physical cell id of Cell B	
downlinkConfigCommon ::= SEQUENCE {		
frequencyInfoDL::= SEQUENCE {		
absoluteFrequencySSB	528990	
frequencyBandList	n41	
absoluteFrequencyPointA	523128	
scs-SpecificCarrier{		
offsetToCarrier	0	
subcarrierSpacing	kHz30	
carrierBandwidth	162	60M
}		

}		
}		
uplinkConfigCommon ::= SEQUENCE {		
frequencyInfoUL	Not Present	
initialUplinkBWP	Refer to Table 4.6.3-14	
	in TS 38.508-1	
}		
ssb-periodicityServingCell	ms20	
dmrs-TypeA-Position	pos2	
ssbSubcarrierSpacing	kHz30	
tdd-UL-DL-ConfigurationCommon = {		
referenceSubcarrierSpacing	kHz30	
pattern1 {		
dl-UL-TransmissionPeriodicity	ms5	
nrofDownlinkSlots	7	DD DD DD DS UU
nrofDownlinkSymbols	6	DL : GP : UL = 6 : 4 : 4
nrofUplinkSlots	2	
nrofUplinkSymbols	4	
}		
}		
ss-PBCH-BlockPower	0	
}		
}		

14.2.1.1.6 Expected Result

Calculate and record the average throughput on TCP layer. The average uplink TCP throughput shall meet or exceed the value in following table.

Table 14.1.1.1.6-1: Expected Re	sult
---------------------------------	------

Test band	Expected UL TCP Throughput
CA_n41C 100M+60M	[TBD]

14.2.1.2 UL Throughput under static channel, CA_n41A-n28A

14.2.1.2.1 Test Purpose

To measure the UE uplink throughput performance while uploading TCP based data in Conducted with NR Inter-band CA between n41 2Tx and n28 1Tx.

14.2.1.2.2 Reference specification

3GPP TS 38.331, 3GPP TS 38.508, 3GPP TS 38.321

14.2.1.2.3 Applicability

This test applies to Type2 UEs supporting NR UL CA_n41A-n28A

14.2.1.2.4 Test conditions

```
[SS configuration]
NR Cell A, PCell
Cell Id=01 TAC = 01
MCC = 460 MNC = 00
Test Band=n41
Test Frequency= f1
UL Modulation / Coding = 27
UL RB Allocation = Full
UL 2x2MIMO = TRUE
UL 256QAM = TRUE
absoluteFrequencySSB=513150
absoluteFrequencyPointA=503172
```

```
NR Cell B, SCell
Cell Id=02 TAC = 01
MCC = 460 MNC = 00
Test Band=n28
Test Frequency= f1
UL Modulation / Coding = 27
UL RB Allocation = Full
UL 2x2MIMO = FALSE
UL 256QAM = TRUE
absoluteFrequencySSB=154570
DL absoluteFrequencyPointA= 151720
UL absoluteFrequencyPointA= 140792
```

[Common conditions]

Common conditions include a set of test points the UE needs to be tested in and the common test parameters for each transmission mode.

Test Point	Propagation Conditions	Correlation Matrices
NR-1	Static	N/A

[UE configuration]

The test USIM shall be inserted.

The UE is in AUTOMATIC network selection mode.

[Initial conditions]

SS

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Test Environment: Normal, as defined in TS 38.508-1 clause 4.1.

1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 Annex A, Figure A.3.1.1.3 and A.3.2 for NR CA.

UE

UE is powered off

14.2.1.2.5 Test procedure

Table 14.1.1.2.5-1: Time of cell power level and parameter changes

Time	Parameter	Unit	NR Cell A	NR Cell B
то	SS/PBCH, SSS EPRE	dBm/SCS	-75	Not Active
T1			-75	-75
T2			-75	-95

PREAMBLE

- 1. SS Activates Cell A configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 14.1.1.2.5-1
- 3. Set the parameters of the propagation condition according to Table 14.1.1.2.4-1.

MAIN BODY

- 4. The UE is powered ON.
- UE performs a Registration procedure on NR Cell A to register for PS services according to TS 38.508 subclause 4.5.2. UE is in state RRC_CONNECTED
- 6. SS activates Cell B and configures the cell power according to T1 in Table 14.1.1.2.5-1
- 7. SS transmits an RRCReconfiguration message including measConfig to setup intra NR measurement and reporting for event A2 and A4.
- 8. The UE sends MeasurementReport message to report event A4 with the measured RSRP value for Cell B
- 9. The SS transmits an RRCReconfiguration message including sCellToAddModList with SCell addition to configure Cell B as SCC. Refer to Table 14.1.1.2.5-2 for parameter configuration
- 10. The UE transmits an RRCReconfigurationComplete message
- 11. SS activates SCC by sending the activation MAC CE. Refer TS 38.321, clauses 5.9, 6.1.3.10.
- 12. Begin uplink TCP transmission. SS schedules UL data on PCC every UL slot and schedules UL data on SCC for the slots which is not collided with UL slots on PCC.
- 13. Keep uplink TCP transmission for 90 seconds and record TCP average throughput result. Verify data transmission on both PCC and SCC.
- 14. Stop uplink data transmission.
- 15. SS deactivates SCC by sending the deactivation MAC CE. Refer TS 38.321, clauses 5.9,

6.1.3.10).

- 16. Repeat step 11-15 for one more iteration.
- 17. Calculate the average TCP throughput on the uplink channel during the file transfer over all iterations.
- 18. SS configures the cell power according to T2 in Table 14.1.1.2.5-1
- 19. The UE sends MeasurementReport message to report event A2 with the measured RSRP value for NR Cell A and B
- 20. SS sends RRCReconfigurationmessage containing an sCellToReleaseList with SCell NR Cell B
- 21. UE transmit an RRCReconfigurationComplete

POSTAMBLE

- 22. Switch Off UE, UE initiates a Detach procedure.
- 23. Deactivate Cell A and Cell B.

Derivation Path: TS 38.331 [6], clause 6.3.2			
Information Element	Value/remark	Comments	
sCellToAddModList {	1 entry		
sCellIndex	1		
sCellConfigCommon ::= SEQUENCE {			
physCellId	Physical cell id of Cell B		
downlinkConfigCommon ::= SEQUENCE {			
frequencyInfoDL::= SEQUENCE {			
absoluteFrequencySSB	154570		
frequencyBandList	n28		
absoluteFrequencyPointA	151720		
scs-SpecificCarrier{			
offsetToCarrier	0		
subcarrierSpacing	kHz15		
carrierBandwidth	160	30M	
}			
}			
}			
uplinkConfigCommon::= SEQUENCE {			
frequencyInfoUL::= SEQUENCE {			
frequencyBandList	n28		
absoluteFrequencyPointA	140792		
}			
scs-SpecificCarrier{			
offsetToCarrier	0		
subcarrierSpacing	kHz15		
carrierBandwidth	160	30M	
}			

Table 14.1.1.2.5-2: sCellToAddMod in RRCReconfiguration Message in step 9

initialUplinkBWP	Refer to Table 4.6.3-14 in TS	
	38.508-1	
}		
ssb-periodicityServingCell	ms20	
dmrs-TypeA-Position	pos2	
ssbSubcarrierSpacing	kHz15	
ss-PBCH-BlockPower	0	
}		
}		

14.2.1.2.6 Expected Result

Calculate and record the average throughput on TCP layer. The average uplink TCP throughput shall meet or exceed the value in following table.

Table 14.1.1.2.6-1: Expected Result

Test band	Expected UL TCP Throughput
CA_n41A-n28A 100M+30M	[TBD]

14.2.1.3 UL Throughput under static channel, CA_n28A-n41A

14.2.1.3.1 Test Purpose

To measure the UE uplink throughput performance while uploading TCP based data in Conducted with NR Inter-band CA between n28 1Tx and n41 2Tx.

14.2.1.3.2 Reference specification

3GPP TS 38.331, 3GPP TS 38.508, 3GPP TS 38.321

14.2.1.3.3 Applicability

This test applies to Type2 UEs supporting NR UL CA_n28A-n41A

14.2.1.3.4 Test conditions

[SS configuration] NR Cell A, PCell Cell Id=01 TAC = 01 MCC = 460 MNC = 00 Test Band=n28 Test Frequency= f1 UL Modulation / Coding = 27 UL RB Allocation = Full UL 2x2MIMO = FALSE UL 256QAM = TRUE absoluteFrequencySSB=154570

DL absoluteFrequencyPointA= 151720 UL absoluteFrequencyPointA= 140792

NR Cell B, SCell Cell Id=01 TAC = 01 MCC = 460 MNC = 00 Test Band=n41 Test Frequency= f1 UL Modulation / Coding = 27 UL RB Allocation = Full UL 2x2MIMO = TURE UL 256QAM = TRUE absoluteFrequencySSB=513150 absoluteFrequencyPointA=503172

[Common conditions]

Common conditions include a set of test points the UE needs to be tested in and the common test parameters for each transmission mode.

Table 14.2.1.3.4-1: Test Points Configuration

Test Point	Propagation Conditions	Correlation Matrices
NR-1	Static	N/A

[UE configuration]

The test USIM shall be inserted.

The UE is in AUTOMATIC network selection mode.

[Initial conditions]

SS

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Test Environment: Normal, as defined in TS 38.508-1 clause 4.1.

1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 Annex A, Figure A.3.1.1.3 and A.3.2 for NR CA.

UE

UE is powered off

14.2.1.3.5 Test procedure

Time	Parameter	Unit	NR Cell A	NR Cell B
то	SS/PBCH,	dBm/SCS	-75	Not Active

Table 14.2.1.3.5-1: Time	of cell power level ar	nd parameter changes
	or een pomer iever u	ia parameter enanges

T1	SSS EPRE	-75	-75
T2		-75	-95

PREAMBLE

- 1. SS Activates Cell A configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 14.1.1.2.5-1
- 3. Set the parameters of the propagation condition according to Table 14.2.1.3.4-1.

MAIN BODY

- 4. The UE is powered ON.
- 5. UE performs a Registration procedure on NR Cell A to register for PS services according to TS 38.508 subclause 4.5.2. UE is in state RRC_CONNECTED
- 6. SS activates Cell B and configures the cell power according to T1 in Table14.2.1.3.5-1
- 7. SS transmits an RRCReconfiguration message including measConfig to setup intra NR measurement and reporting for event A2 and A4.
- 8. The UE sends MeasurementReport message to report event A4 with the measured RSRP value for Cell B
- 9. The SS transmits an RRCReconfiguration message including sCellToAddModList with SCell addition to configure Cell B as SCC. Refer to Table 14.2.1.3.5-2 for parameter configuration
- 10. The UE transmits an RRCReconfigurationComplete message
- 11. SS activates SCC by sending the activation MAC CE. Refer TS 38.321 , clauses 5.9, 6.1.3.10.
- 24. Begin uplink TCP transmission. SS schedules UL data on SCC every UL slot and schedules UL data on PCC for the slots which is not collided with UL slots on SCC.
- 12. Keep uplink TCP transmission for 90 seconds and record TCP average throughput result. Verify data transmission on both PCC and SCC.
- 13. Stop uplink data transmission.
- 14. SS deactivates SCC by sending the deactivation MAC CE. Refer TS 38.321, clauses 5.9, 6.1.3.10).
- 15. Repeat step 11-15for one more iteration.
- 16. Calculate the average TCP throughput on the uplink channel during the file transfer over all iterations.
- 17. SS configures the cell power according to T2 in Table 14.1.1.2.5-1
- 18. The UE sends MeasurementReport message to report event A2 with the measured RSRP value for NR Cell A and B
- 19. SS sends RRCReconfigurationmessage containing an sCellToReleaseList with SCell NR Cell B
- 20. UE transmit an RRCReconfigurationComplete

POSTAMBLE

- 21. Switch Off UE, UE initiates a Detach procedure.
- 22. Deactivate Cell A and Cell B.

Table 14.2.1.3.5-2: sCellToAddMod in RRCReconfiguration Message in step 9

Derivation Path: TS 38.331 [6], clause 6.3.2		
Information Element	Value/remark	Comments
sCellToAddModList {	1 entry	
sCellIndex	1	
sCellConfigCommon ::= SEQUENCE {		
physCellId	Physical cell id of Cell B	
downlinkConfigCommon ::= SEQUENCE {		
frequencyInfoDL::= SEQUENCE {		
absoluteFrequencySSB	513150	
frequencyBandList	n41	
absoluteFrequencyPointA	503172	
scs-SpecificCarrier{		
offsetToCarrier	0	
subcarrierSpacing	kHz30	
carrierBandwidth	273	100M
}		
}		
}		
uplinkConfigCommon ::= SEQUENCE {		
frequencyInfoUL	Not Present	
initialUplinkBWP	Refer to Table 4.6.3-14 in TS	
	38.508-1	
}		
ssb-periodicityServingCell	ms20	
dmrs-TypeA-Position	pos2	
ssbSubcarrierSpacing	kHz30	
tdd-UL-DL-ConfigurationCommon = {		
referenceSubcarrierSpacing	kHz30	
pattern1 {		
dl-UL-TransmissionPeriodicity	ms5	
nrofDownlinkSlots	7	DD DD DD DS UL
nrofDownlinkSymbols	6	DL : GP : UL = 6 :
		4:4
nrofUplinkSlots	2	
nrofUplinkSymbols	4	
}		
}		
ss-PBCH-BlockPower	0	
}		
}		1

14.2.1.3.6 Expected Result

Calculate and record the average throughput on TCP layer. The average uplink TCP throughput shall meet or exceed the value in following table.

Table 14.2.1.3.6-1: Expected Result

Test band	Expected UL TCP Throughput	
CA_n28A-n41A 30M+100M	[TBD]	

14.2.1.4 UL Throughput under static channel, **2TX-1TX** Switching, **CA_n41A-n79A**, Unaligned frame boundary

14.2.1.4.1 Test Purpose

To measure the UE uplink throughput performance while uploading TCP based data in Conducted with NR Inter-band CA between n41 2Tx and n79 1Tx.

Verify UE support the unaligned frame boundary with slot alignment for R16 inter-band CA.

14.2.1.4.2 Reference specification

3GPP TS 38.331, 3GPP TS 38.508, 3GPP TS 38.321

14.2.1.4.3 Applicability

This test applies to Type2 UEs supporting NR UL CA_n41A-n79A

14.2.1.4.4 Test conditions

```
[SS configuration]
NR Cell A, PCell
Cell Id=01 TAC = 01
MCC = 460 MNC = 00
Test Band=n41
Test Frequency= f1
UL Modulation / Coding = 27
UL RB Allocation = Full
UL 2x2MIMO = TRUE
UL 256QAM = TRUE
absoluteFrequencySSB=513150
```

NR Cell B, SCell Cell Id=02 TAC = 01 MCC = 460 MNC = 00 Test Band=n79 Test Frequency= f1 UL Modulation / Coding = 27 UL RB Allocation = Full UL 2x2MIMO = FALSE

UL 256QAM = TRUE

absoluteFrequencySSB=721824

absoluteFrequencyPointA=720048

The frame boundary of n41 Cell A and n79 Cell B are unaligned as indicated below. The slot boundary are aligned.

Cell A (n41)				D	D	D	D	D	D	D	S	U	U
Cell B (n79)	D	D	D	S	U	D	D	S	U	U			

[Common conditions]

Common conditions include a set of test points the UE needs to be tested in and the common test parameters for each transmission mode.

Table 14.2.1.4.4-1: Tes	st Points Configuration
	ci onici conngaración

Test Point	Propagation Conditions	Correlation Matrices
NR-1	Static	N/A

[UE configuration]

The test USIM shall be inserted.

The UE is in AUTOMATIC network selection mode.

[Initial conditions]

SS

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Test Environment: Normal, as defined in TS 38.508-1 clause 4.1.

1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 Annex A, Figure A.3.1.1.3 and A.3.2 for NR CA.

UE

UE is powered off

14.2.1.4.5 Test procedure

Time	Parameter	Unit	NR Cell A	NR Cell B
то	SS/PBCH, SSS EPRE		-75	Not Active
T1		dBm/SCS	-75	-75
T2			-75	-95

PREAMBLE

1. SS Activates Cell A configures the corresponding Master Information Block and System

Information Block broadcast.

- 2. The SS configures the initial power according to T0 in Table 14.2.1.4.5-1
- 3. Set the parameters of the propagation condition according to Table 14.2.1.4.4-1.

MAIN BODY

- 4. The UE is powered ON.
- 5. UE performs a Registration procedure on NR Cell A to register for PS services according to TS 38.508 subclause 4.5.2. UE is in state RRC_CONNECTED
- 6. SS activates Cell B and configures the cell power according to T1 in Table14.2.1.4.5-1
- 7. SS transmits an RRCReconfiguration message including measConfig to setup intra NR measurement and reporting for event A2 and A4.
- 8. The UE sends MeasurementReport message to report event A4 with the measured RSRP value for Cell B
- 9. The SS transmits an RRCReconfiguration message including sCellToAddModList with SCell addition to configure Cell B as SCC. Refer to Table 14.2.1.4.5-2 for parameter configuration
- 10. The UE transmits an RRCReconfigurationComplete message
- 11. SS activates SCC by sending the activation MAC CE. Refer TS 38.321, clauses 5.9, 6.1.3.10.
- 12. Begin uplink TCP transmission. SS schedules UL data on PCC and SCC respectively every UL slot. UL MIMO is enabled on PCC
- 13. Keep uplink TCP transmission for 90 seconds and record TCP average throughput result. Verify data transmission on both PCC and SCC.
- 14. Stop uplink data transmission.
- 15. SS deactivates SCC by sending the deactivation MAC CE. Refer TS 38.321, clauses 5.9, 6.1.3.10).
- 16. Repeat step 11-15 for one more iteration.
- 17. Calculate the average TCP throughput on the uplink channel during the file transfer over all iterations.
- 18. SS configures the cell power according to T2 in Table 14.2.1.4.5-1
- 19. The UE sends MeasurementReport message to report event A2 with the measured RSRP value for NR Cell A and B
- 20. SS sends RRCReconfigurationmessage containing an sCellToReleaseList with SCell NR Cell B
- 21. UE transmit an RRCReconfigurationComplete

POSTAMBLE

Deri

- 22. Switch Off UE, UE initiates a Detach procedure.
- 23. Deactivate Cell A and Cell B.

	, , , , , , , , , , , , , , , , , , , ,	
ivation Path: TS 38.331 [6], clause 6.3.2		
Information Element	Value/remark	Commei

Table 14.2.1.4.5-2: sCellToAddMod in RRCReconfiguration Message in step 9

Information Element	Value/remark	Comments
sCellToAddModList {	1 entry	
sCellIndex	1	
sCellConfigCommon ::= SEQUENCE {		
physCellId	Physical cell id of Cell B	

downlinkConfigCommon ::= SEQUENCE {		
frequencyInfoDL::= SEQUENCE {		
	721024	
absoluteFrequencySSB	721824	
frequencyBandList	n79	
absoluteFrequencyPointA	720048	
scs-SpecificCarrier{		
offsetToCarrier	0	
subcarrierSpacing	kHz30	
carrierBandwidth	273	100M
}		
}		
}		
uplinkConfigCommon ::= SEQUENCE {		
frequencyInfoUL	Not Present	
initialUplinkBWP	Refer to Table 4.6.3-14 in TS	
	38.508-1	
}		
ssb-periodicityServingCell	ms20	
dmrs-TypeA-Position	pos2	
ssbSubcarrierSpacing	kHz15	
tdd-UL-DL-ConfigurationCommon = {		
referenceSubcarrierSpacing	kHz30	
pattern1 {		
dl-UL-TransmissionPeriodicity	ms2p5	2.5ms
nrofDownlinkSlots	3	DDDSU
nrofDownlinkSymbols	10	DL : GP : UL =
		10:2:2
nrofUplinkSlots	1	
nrofUplinkSymbols	2	
}		
pattern2 {		
dl-UL-TransmissionPeriodicity	ms2p5	2.5ms
nrofDownlinkSlots	2	DDSUU
nrofDownlinkSymbols	10	DL : GP : UL =
		10:2:2
nrofUplinkSlots	2	
nrofUplinkSymbols	2	
}		
· · · · · · · · · · · · · · · · · · ·		
} ss-PBCH-BlockPower	0	
}		

14.2.1.4.6 Expected Result

Calculate and record the average throughput on TCP layer. The average uplink TCP throughput shall meet or exceed the value in following table.

Test band	Expected UL TCP Throughput							
CA_n41A-n79A 100M+100M	[TBD]							

Table 14.2.1.4.6-1: Expected Result

14.2.1.5 UL Throughput under static channel, 2TX-1TX Switching, CA_n79A-n41A , Unaligned frame boundary

14.2.1.5.1 Test Purpose

To measure the UE uplink throughput performance while uploading TCP based data in Conducted with NR Inter-band CA between n79 2Tx and n41 1Tx.

To measure the UE uplink throughput performance while uploading TCP based data in Conducted with NR Inter-band CA between n79 2Tx and n41 1Tx .

Verify UE support the unaligned frame boundary with slot alignment for R16 inter-band CA.

14.2.1.5.2 Reference specification

3GPP TS 38.331, 3GPP TS 38.508, 3GPP TS 38.321

14.2.1.5.3 Applicability

This test applies to Type2 UEs supporting NR UL CA_n41A-n79A

14.2.1.5.4 Test conditions

[SS configuration] NR Cell A, PCell Cell Id=01 TAC = 01 MCC = 460 MNC = 00 Test Band=n79 Test Frequency= f1 UL Modulation / Coding = 27 UL RB Allocation = Full UL 2x2MIMO = TRUE UL 256QAM = TRUE absoluteFrequencySSB=721824

NR Cell B, SCell Cell Id=02 TAC = 01 MCC = 460 MNC = 00 Test Band=n41

Test Frequency= f1 UL Modulation / Coding = 27 UL RB Allocation = Full UL 2x2MIMO = FALSE UL 256QAM = TRUE absoluteFrequencySSB=513150 absoluteFrequencyPointA=503172

The frame boundary of n41 Cell A and n79 Cell B are unaligned as indicated below. The slot boundary are aligned.

Cell A (n79)				D	D	D	S	U	D	D	S	U	U
Cell B (n41)	D	D	D	D	D	D	D	S	U	U			

[Common conditions]

Common conditions include a set of test points the UE needs to be tested in and the common test parameters for each transmission mode.

Test Point	Propagation Conditions	Correlation Matrices
NR-1	Static	N/A

[UE configuration]

The test USIM shall be inserted.

The UE is in AUTOMATIC network selection mode.

[Initial conditions]

SS

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

- Test Environment: Normal, as defined in TS 38.508-1 clause 4.1.
- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 Annex A, Figure A.3.1.1.3 and A.3.2 for NR CA.

UE

UE is powered off

14.2.1.5.5 Test procedure

Time	Parameter	Unit	NR Cell A	NR Cell B
то	SS/PBCH,		-75	Not Active
T1	SSS EPRE	dBm/SCS	-75	-75

Table 14.2.1.5.5-1: Time of cell power level and parameter changes

	_		
T2		-75	-95

PREAMBLE

- 1. SS Activates Cell A configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 14.2.1.5.5-1
- 3. Set the parameters of the propagation condition according to Table 14.2.1.5.4-1.

MAIN BODY

- 4. The UE is powered ON.
- 5. UE performs a Registration procedure on NR Cell A to register for PS services according to TS 38.508 subclause 4.5.2. UE is in state RRC_CONNECTED
- 6. SS activates Cell B and configures the cell power according to T1 in Table 14.2.1.5.5-1
- 7. SS transmits an RRCReconfiguration message including measConfig to setup intra NR measurement and reporting for event A2 and A4.
- 8. The UE sends MeasurementReport message to report event A4 with the measured RSRP value for Cell B
- 9. The SS transmits an RRCReconfiguration message including sCellToAddModList with SCell addition to configure Cell B as SCC. Refer to Table 14.2.1.5.5-2 for parameter configuration
- 10. The UE transmits an RRCReconfigurationComplete message
- 11. SS activates SCC by sending the activation MAC CE. Refer TS 38.321, clauses 5.9, 6.1.3.10.
- 12. Begin uplink TCP transmission. SS schedules UL data on PCC and SCC respectively every UL slot. UL MIMO is enabled on PCC.
- 13. Keep uplink TCP transmission for 90 seconds and record TCP average throughput result. Verify data transmission on both PCC and SCC.
- 14. Stop uplink data transmission.
- 15. SS deactivates SCC by sending the deactivation MAC CE. Refer TS 38.321, clauses 5.9, 6.1.3.10).
- 16. Repeat step 11-15 for one more iteration.
- 17. Calculate the average TCP throughput on the uplink channel during the file transfer over all iterations.
- 18. SS configures the cell power according to T2 in Table 14.2.1.5.5-1
- 19. The UE sends MeasurementReport message to report event A2 with the measured RSRP value for NR Cell A and B
- 20. SS sends RRCReconfigurationmessage containing an sCellToReleaseList with SCell NR Cell B
- 21. UE transmit an RRCReconfigurationComplete

POSTAMBLE

- 22. Switch Off UE, UE initiates a Detach procedure.
- 23. Deactivate Cell A and Cell B.

Table 14.2.1.5.5-2: sCellToAddMod in RRCReconfiguration Message in step 9

Derivation Path: TS 38.331 [6], clause 6.3.2

Information Element	Value/remark	Comments
sCellToAddModList {	1 entry	
sCellIndex	1	
sCellConfigCommon ::= SEQUENCE {		
physCellId	Physical cell id of Cell B	
downlinkConfigCommon ::= SEQUENCE {		
frequencyInfoDL::= SEQUENCE {		
absoluteFrequencySSB	524910	
frequencyBandList	n41	
absoluteFrequencyPointA	523170	
scs-SpecificCarrier{		
offsetToCarrier	0	
subcarrierSpacing	kHz30	
carrierBandwidth	162	60M
}		
}		
}		
uplinkConfigCommon ::= SEQUENCE {		
frequencyInfoUL	Not Present	
initialUplinkBWP	Refer to Table 4.6.3-14	
	in TS 38.508-1	
}		
ssb-periodicityServingCell	ms20	
dmrs-TypeA-Position	pos2	
ssbSubcarrierSpacing	kHz30	
tdd-UL-DL-ConfigurationCommon = {		
referenceSubcarrierSpacing	kHz30	
pattern1 {		
dl-UL-TransmissionPeriodicity	ms5	
nrofDownlinkSlots	7	DD DD DD DS UU
nrofDownlinkSymbols	6	DL : GP : UL = 6 : 4 : 4
nrofUplinkSlots	2	
nrofUplinkSymbols	4	
}		
}		
ss-PBCH-BlockPower	0	
}		
}		

14.2.1.5.6 Expected Result

Calculate and record the average throughput on TCP layer. The average uplink TCP throughput shall meet or exceed the value in following table.

Table 14.2.1.5.6-1: Expected Result

Test band	Expected UL TCP Throughput
CA_n79A-n41A 100M+100M	[TBD]

14.2.2 Mobility

14.2.2.1 Handover with uplink data transmission, CA_n41C

14.2.2.1.1 Test Purpose

Test to verify that UE handover with continuous uplink data transmission in NR Intra-band Contiguous CA

14.2.2.1.2 Reference specification

3GPP TS 38.331, 3GPP TS 38.508, 3GPP TS 38.321

14.2.2.1.3 Applicability

This test applies to Type2 UEs supporting NR UL CA_n41C

14.2.2.1.4 Test conditions

[SS configuration] NR Cell A, PCell Cell Id=01 TAC = 01 MCC = 460 MNC = 00 Test Band=n41 Test Frequency= f1 UL Modulation / Coding = 27 UL RB Allocation = Full UL 2x2MIMO = TRUE UL 256QAM = TRUE absoluteFrequencySSB=513150

NR Cell B, SCell Cell Id=02 TAC = 01 MCC = 460 MNC = 00 Test Band=n41 Test Frequency= f5 UL Modulation / Coding = 27 UL RB Allocation = Full UL 2x2MIMO = TRUE UL 256QAM = TRUE absoluteFrequencySSB=524910

absoluteFrequencyPointA=523128

NR Cell C, PCell Cell Id=03 TAC = 01 MCC = 460 MNC = 00 Test Band=n41 Test Frequency= f1 UL Modulation / Coding = 27 UL RB Allocation = Full UL 2x2MIMO = TRUE UL 256QAM = TRUE absoluteFrequencySSB=524910 absoluteFrequencyPointA=503172

NR Cell D, SCell Cell Id=04 TAC = 01 MCC = 460 MNC = 00 Test Band=n41 Test Frequency= f5 UL Modulation / Coding = 27 UL RB Allocation = Full UL 2x2MIMO = TRUEUL 256QAM = TRUE absoluteFrequencySSB=528990 absoluteFrequencyPointA=523128

[Common conditions]

Common conditions include a set of test points the UE needs to be tested in and the common test parameters for each transmission mode.

Test Point Propagation Conditions		Correlation Matrices
NR-1	Static	N/A

Table 14.1.1.1.4-1: Test Points Configuration

[UE configuration]

The test USIM shall be inserted.

The UE is in AUTOMATIC network selection mode.

[Initial conditions]

SS

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Test Environment: Normal, as defined in TS 38.508-1 clause 4.1.

1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 Annex A, Figure A.3.1.1.3 and A.3.2 for NR CA.

UE

UE is powered off

14.2.2.1.5 Test procedure

Time	Parameter	Unit	NR Cell A	NR Cell B	NR Cell C	NR Cell D
Time	Falameter	Unit	NK CEILA	INK CEILD	NK CEILC	INK CEILD
т0			-75	Not Active	Not Active	Not Active
T1	SS/PBCH,	dBm/SCS	-75	-75	Not Active	Not Active
T2	SSS EPRE	ubiii/SCS	-95	-95	-75	-75
Т3			-75	-75	-95	-95

Table 14.1.2.1.5-1: Time of cell power level and parameter changes

PREAMBLE

- 1. SS Activates Cell A configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 14.1.2.1.5-1
- 3. The UE is powered ON.

MAIN BODY

- UE performs a Registration procedure on NR Cell A to register for PS services according to TS 38.508 subclause 4.5.2. UE is in state RRC_CONNECTED
- 5. SS activates Cell B and configures the cell power according to T1 in Table 14.1.2.1.5-1
- 6. The SS transmits an RRCReconfiguration message including measConfig to setup intra NR measurement and reporting for event A2, A3 and A4.
- 7. The UE sends MeasurementReport message to report event A4 with the measured RSRP value for Cell B
- 8. The SS transmits an RRCReconfiguration message including sCellToAddModList with SCell addition to configure Cell B as SCC. Refer to Table 14.1.1.1.5-2 for parameter configuration
- 9. The UE transmits an RRCReconfigurationComplete message
- 10. SS activates Cell B as SCC by sending the activation MAC CE. Refer TS 38.321, clauses 5.9, 6.1.3.10.
- 11. Begin uplink TCP transmission. SS schedules UL data on PCC and SCC
- 12. Keep uplink TCP transmission for 90 seconds and record TCP average throughput result. Verify data transmission on both PCC and SCC.
- 13. SS configures the cell power according to T2 in Table 14.1.2.1.5-1
- 14. Verify that UE sends MeasurementReport message to report event A2 and A3 with the measured RSRP value for NR Cell A, Cell Band Cell C
- 15. The SS transmits an RRCReconfiguration message including a reconfigurationWithSync to change PCell to Cell C and sCellToReleaseList to release Cell B as the SCell. Refer to Table 14.1.2.1.5-2 for parameter configuration
- 16. Verify that UE sends RRCReconfigurationComplete message in Cell C to indicate the successful

handover

- 17. Verify that UE sends MeasurementReport message in Cell C to report event A4 with the measured RSRP value for NR Cell D
- The SS transmits an RRCReconfiguration message containing an sCellToAddModList with SCell Cell D. Refer to Table 14.1.2.1.5-3 for parameter configuration
- 19. Verify that UE sends RRCReconfigurationComplete
- 20. SS activates Cell D as SCC by sending the activation MAC CE. Refer TS 38.321, clauses 5.9, 6.1.3.10
- 21. Verify the TCP data transmission is continued on Cell C and Cell D. Keep uplink TCP transmission for 90 seconds and record TCP average throughput result.
- 22. SS configures the cell power according to T3 in Table 14.1.2.1.5-1
- 23. Verify that UE sends MeasurementReport message to report event A2 and A3 with the measured RSRP value for NR Cell C, Cell D and Cell A
- 24. The SS transmits an RRCReconfiguration message including a reconfigurationWithSync to change PCell to Cell A and sCellToReleaseList to release Cell D as the SCell. Refer to Table 14.1.2.1.5-2 for parameter configuration
- 25. Verify that UE sends RRCReconfigurationComplete message in Cell A to indicate the successful handover
- 26. Verify that UE sends MeasurementReport message in Cell A to report event A4 with the measured RSRP value for NR Cell B
- 27. The SS transmits an RRCReconfiguration message containing an sCellToAddModList with SCell Cell B. Refer to Table 14.1.2.1.5-3 for parameter configuration
- 28. Verify that UE sends RRCReconfigurationComplete
- 29. SS activates Cell B as SCC by sending the activation MAC CE. Refer TS 38.321, clauses 5.9, 6.1.3.10
- 30. Verify the TCP data transmission is continued on Cell A and Cell B. Keep uplink TCP transmission for 90 seconds and record TCP average throughput result.
- 31. Stop uplink data transmission.
- 32. SS sends RRCReconfigurationmessage containing an sCellToReleaseList with SCell NR Cell B
- 33. UE transmit an RRCReconfigurationComplete

POSTAMBLE

- 34. Switch Off UE, UE initiates a Detach procedure.
- 35. Deactivate Cell A , Cell B, Cell C and Cell D.

Table 14.1.2.1.5-2: RRCReconfiguration in step 14 and step 23

Derivation Path: TS 38.331 [6], clause 6.3.2			
Information Element	Value/remark	Comment	
CellGroupConfig ::= SEQUENCE {			
spCellConfig SEQUENCE {			
reconfigurationWithSync SEQUENCE {			
spCellConfigCommon{			
physCellId	Physical Cell ID of Cell C	Step 14	

Г

	Physical Cell ID of Cell A	Step 23
downlinkConfigCommon {		
frequencyInfoDL::= SEQUENCE {		
absoluteFrequencySSB	504990	Step 14, Cell C
	513150	Step 23, Cell A
frequencyBandList	n41	
absoluteFrequencyPointA	503172	
scs-SpecificCarrier{		
offsetToCarrier	0	
subcarrierSpacing	kHz30	
carrierBandwidth	273	100M
}		
}		
}		
sCellToReleaseList SEQUENCE {	1 entry	
sCellIndex[1]	1	
}		
}		

Table 14.1.1.1.5-3: *sCellToAddMod* in *RRCReconfiguration* Message in step 8, step 17 and step 26

Information Element	Value/remark	Comments
sCellToAddModList {	1 entry	
sCellIndex	1	
sCellConfigCommon ::= SEQUENCE {		
physCellId	Physical cell id of Cell B	Step 8 and Step 27
	Physical cell id of Cell D	Step 18
downlinkConfigCommon ::= SEQUENCE {		
frequencyInfoDL::= SEQUENCE {		
absoluteFrequencySSB	524910	Step 8 and Step 27
	528990	Step 18
frequencyBandList	n41	
absoluteFrequencyPointA	523128	
scs-SpecificCarrier{		
offsetToCarrier	0	
subcarrierSpacing	kHz30	
carrierBandwidth	162	60M
}		
}		
}		
uplinkConfigCommon ::= SEQUENCE {		
frequencyInfoUL	Not Present	

initialUplinkBWP	Refer to Table 4.6.3-14 in	
	TS 38.508-1	
	13 38.308-1	
}		
ssb-periodicityServingCell	ms20	
dmrs-TypeA-Position	pos2	
ssbSubcarrierSpacing	kHz30	
tdd-UL-DL-ConfigurationCommon = {		
referenceSubcarrierSpacing	kHz30	
pattern1 {		
dl-UL-TransmissionPeriodicity	ms5	
nrofDownlinkSlots	7	DD DD DD DS UU
nrofDownlinkSymbols	6	DL : GP : UL = 6 : 4 :
		4
nrofUplinkSlots	2	
nrofUplinkSymbols	4	
}		
}		
ss-PBCH-BlockPower	0	
}		
}		

14.2.2.1.6 Expected Result

UE could support intra-frequency handover with continuous uplink data transmission and record the throughput before and after handover

Table	14.1.2.1	.6-1: Expe	ected Result
-------	----------	------------	--------------

Test band	Step	Expected DL TCP Throughput
CA_n41C 100M+60M	Step 11	[TBD]
	Step 20	[TBD]
	Step 30	[TBD]

14.2.2.2 PCell Handover with uplink data transmission, CA_n41A-n28A

14.2.2.2.1 Test Purpose

Test to verify that UE could support PCell handover meanwhile keep SCell unchanged with continuous uplink data transmission in NR Inter-band n41 2Tx and n28 1Tx.

14.2.2.2.2 Reference specification

3GPP TS 38.331, 3GPP TS 38.508, 3GPP TS 38.321

14.2.2.2.3 Applicability

GTI

This test applies to Type2 UEs supporting NR DL CA _n41A-n28A

14.2.2.2.4 Test conditions

[SS configuration] NR Cell A, PCell Cell Id=01 TAC = 01 MCC = 460 MNC = 00 Test Band=n41 Test Frequency= f1 UL Modulation / Coding = 27 UL RB Allocation = Full UL 2x2MIMO = TRUE UL 256QAM = TRUE absoluteFrequencySSB=513150 absoluteFrequencyPointA=503172

NR Cell B, SCell Cell Id=02 TAC = 01 MCC = 460 MNC = 00 Test Band=n28 Test Frequency= f1 UL Modulation / Coding = 27 UL RB Allocation = Full UL 2x2MIMO = FAILSE UL 256QAM = TRUE absoluteFrequencySSB=154570 DL absoluteFrequencyPointA= 151720 UL absoluteFrequencyPointA= 140792

NR Cell C, PCell Cell Id=03 TAC = 01 MCC = 460 MNC = 00 Test Band=n41 Test Frequency= f1 DL Modulation / Coding = 27 DL RB Allocation = Full DL 4x4MIMO = TRUE DL 256QAM = TRUE absoluteFrequencySSB= 504990 absoluteFrequencyPointA= 503172

[Common conditions]

Common conditions include a set of test points the UE needs to be tested in and the common test parameters for each transmission mode.

		0
Test Point	Propagation Conditions	Correlation Matrices
NR-1	Static	N/A

Table	14.1	2.7.4-	1: Test	Points	Configuration
1 a b l c	*		1		Configuration

[UE configuration]

The test USIM shall be inserted.

The UE is in AUTOMATIC network selection mode.

[Initial conditions]

SS

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Test Environment: Normal, as defined in TS 38.508-1 clause 4.1.

1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 Annex A, Figure A.3.1.1.3 and A.3.2 for NR CA.

UE

UE is powered off

14.2.2.2.5 Test procedure

Time	Parameter	Unit	NR Cell A	NR Cell B	NR Cell C
Т0			-75	Not Active	Not Active
T1	SS/PBCH,		-75	-75	Not Active
T2	SSS EPRE	dBm/SCS	-95	-75	-75
Т3			-75	-75	-95

Table 14.1.2.7.5-1: Time of cell power level and parameter changes

PREAMBLE

- 1. SS Activates Cell A configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 14.1.2.7.5-1
- 3. The UE is powered ON.

MAIN BODY

- 4. UE performs a Registration procedure on NR Cell A to register for PS services according to TS 38.508 subclause 4.5.2. UE is in state RRC_CONNECTED
- 5. SS activates Cell B and configures the cell power according to T1 in Table 14.1.2.7.5-1
- 6. The SS transmits an RRCReconfiguration message including measConfig to setup intra NR measurement and reporting for event A2, A3 and A4.
- 7. The UE sends MeasurementReport message to report event A4 with the measured RSRP value for Cell B

- 8. The SS transmits an RRCReconfiguration message including sCellToAddModList with SCell addition to configure Cell B as SCC. Refer to Table 14.1.2.7.5-2 for parameter configuration
- 9. The UE transmits an RRCReconfigurationComplete message
- SS activates Cell B as SCC by sending the activation MAC CE. Refer TS 38.321, clauses 5.9, 6.1.3.10.
- Begin uplink TCP transmission. SS schedules UL data on PCC every UL slot and schedules UL data on SCC for the slots which is not collided with UL slots on PCC. UL MIMO is enabled on PCC
- 12. Keep uplink TCP transmission for 90 seconds and record TCP average throughput result. Verify data transmission on both PCC and SCC.
- 13. SS configures the cell power according to T2 in Table 14.1.2.7.5-1
- 14. Verify tht UE sends MeasurementReport message to report event A3 with the measured RSRP value for NR Cell A and Cell B
- 15. The SS transmits an RRCReconfiguration message including a reconfigurationWithSync to change PCell to Cell C and sCellToAddModList to keep Cell B as SCell. Refer to Table 14.1.2.7.5-2 for parameter configuration
- 16. Verify that UE sends RRCReconfigurationComplete message in Cell C
- 17. Verify the TCP data transmission is continued on Cell C and Cell B. Keep uplink TCP transmission for 90 seconds and record TCP average throughput result.
- 18. SS configures the cell power according to T3 in Table 14.1.2.7.5-1
- 19. Verify tht UE sends MeasurementReport message to report event A3 with the measured RSRP value for NR Cell A and Cell B
- 20. The SS transmits an RRCReconfiguration message including a reconfigurationWithSync to change PCell to Cell A and sCellToAddModList to keep Cell B as SCell. Refer to Table 14.1.2.7.5-2 for parameter configuration
- 21. Verify that UE sends RRCReconfigurationComplete message in Cell A
- 22. Verify the TCP data transmission is continued on Cell A and Cell B. Keep uplink TCP transmission for 90 seconds and record TCP average throughput result.
- 23. Stop uplink data transmission.
- 24. SS sends RRCReconfigurationmessage containing an sCellToReleaseList with SCell NR Cell B
- 25. UE transmit an RRCReconfigurationComplete

POSTAMBLE

- 26. Switch Off UE, UE initiates a Detach procedure.
- 27. Deactivate Cell A , Cell B and Cell C.

Derivation Path: TS 38.331 [6], clause 6.3.2			
Information Element	Value/remark	Comments	
CellGroupConfig ::= SEQUENCE {			
spCellConfig SEQUENCE {			
reconfigurationWithSync SEQUENCE {			
spCellConfigCommon{			
physCellId	Physical Cell ID of Cell C	Step 15	

Table 14.1.2.7.5-2: RRCReconfiguration in step14 and Step19

	Physical Cell ID of Cell A	Step 20
downlinkConfigCommon {	,	
frequencyInfoDL::= SEQUENCE {		
absoluteFrequencySSB	504990	Step 15, Cell C
	513150	Step 20, Cell A
frequencyBandList	n41	
absoluteFrequencyPointA	503172	
scs-SpecificCarrier{		
offsetToCarrier	0	
subcarrierSpacing	kHz30	
carrierBandwidth	273	100M
}	275	
}		
}		
}		
}		
sCellToAddModList {	1 entry	
sCellIndex	1	
sCellConfigCommon ::= SEQUENCE {	1 	
physCellId	Physical cell id of Cell B	
downlinkConfigCommon ::= SEQUENCE {		
frequencyInfoDL::= SEQUENCE {		
absoluteFrequencySSB	154570	
frequencyBandList	n28	
absoluteFrequencyPointA	151720	
scs-SpecificCarrier{	151720	
offsetToCarrier	0	
	0	
subcarrierSpacing	kHz15	2014
carrierBandwidth	160	30M
}		
}		
uplinkConfigCommon::= SEQUENCE {		
frequencyInfoUL::= SEQUENCE {	20	
frequencyBandList	n28	
absoluteFrequencyPointA	140792	
}		
scs-SpecificCarrier{		
offsetToCarrier	0	
subcarrierSpacing	kHz15	
carrierBandwidth	160	30M
}		
initialUplinkBWP	Refer to Table 4.6.3-14 in TS	

	38.508-1	
}		
ssb-periodicityServingCell	ms20	
dmrs-TypeA-Position	pos2	
ssbSubcarrierSpacing	kHz15	
ss-PBCH-BlockPower	0	
}		
}		

14.2.2.2.6 Expected Result

UE could support PCell intra-frequency handover with continuous uplink data transmission and record the throughput before and after handover

Test band	Step	Expected UL TCP Throughput
CA_n41A+n28A	Step 12	[TBD]
100M+30M	Step 17	[TBD]
	Step 22	[TBD]

Table 14.2.2.2.6-1: Expected Result

14.2.2.3 Handover with uplink data transmission, PCell and SCell, CA_n41A-n28A

14.2.2.3.1 Test Purpose

Test to verify that UE could support handover on PCC and SCC with continuous uplink data transmission in NR Inter-band n41 2Tx and n28 1Tx .

14.2.2.3.2 Reference specification

3GPP TS 38.331, 3GPP TS 38.508, 3GPP TS 38.321

14.2.2.3.3 Applicability

This test applies to Type2 UEs supporting NR DL CA _n41A-n28A

14.2.2.3.4 Test conditions

[SS configuration] NR Cell A, PCell Cell Id=01 TAC = 01 MCC = 460 MNC = 00 Test Band=n41 Test Frequency= f1 UL Modulation / Coding = 27 UL RB Allocation = Full UL 2x2MIMO = TRUE

GTI

UL 256QAM = TRUE absoluteFrequencySSB=513150 absoluteFrequencyPointA=503172

NR Cell B, SCell

Cell Id=02 TAC = 01 MCC = 460 MNC = 00 Test Band=n28 Test Frequency= f1 UL Modulation / Coding = 27 UL RB Allocation = Full UL 2x2MIMO = FALSE UL 256QAM = TRUE absoluteFrequencySSB=154570 DL absoluteFrequencyPointA= 151720 UL absoluteFrequencyPointA= 140792

NR Cell C, PCell Cell Id=03 TAC = 01 MCC = 460 MNC = 00 Test Band=n41 Test Frequency= f1 UL Modulation / Coding = 27 UL RB Allocation = Full UL 2x2MIMO = TRUE UL 256QAM = TRUE absoluteFrequencySSB=504990 absoluteFrequencyPointA=503172

```
NR Cell D, SCell
Cell Id=04 TAC = 01
MCC = 460 MNC = 00
Test Band=n28
Test Frequency= f1
UL Modulation / Coding = 27
UL RB Allocation = Full
UL 2x2MIMO = FALSE
UL 256QAM = TRUE
absoluteFrequencySSB=154570
```

DL absoluteFrequencyPointA= 151720

UL absoluteFrequencyPointA= 140792

Common conditions include a set of test points the UE needs to be tested in and the common test parameters for each transmission mode.

Table 14.1.2.5.4-1: Test Points Configuration

Test Point	Propagation Conditions	Correlation Matrices
NR-1	Static	/A

[UE configuration]

The test USIM shall be inserted.

The UE is in AUTOMATIC network selection mode.

[Initial conditions]

SS

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Test Environment: Normal, as defined in TS 38.508-1 clause 4.1.

1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 Annex A, Figure A.3.1.1.3 and A.3.2 for NR CA.

UE

UE is powered off

14.2.2.3.5 Test procedure

Table 14.1.2.5.5-1: Time of cell power level and parameter changes

Time	Parameter	Unit	NR Cell A	NR Cell B	NR Cell C	NR Cell D
т0	SS/PBCH, SSS EPRE		-75	Not Active	Not Active	Not Active
T1		dBm/SCS	-75	-75	Not Active	Not Active
T2		ubiii/SCS	-95	-95	-75	-75
Т3			-75	-75	-95	-95

PREAMBLE

- 1. SS Activates Cell A configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 14.1.2.5.5-1
- 3. The UE is powered ON.

MAIN BODY

- 4. UE performs a Registration procedure on NR Cell A to register for PS services according to TS 38.508 subclause 4.5.2. UE is in state RRC_CONNECTED
- 5. SS activates Cell B and configures the cell power according to T1 in Table 14.1.2.5.5-1
- 6. The SS transmits an RRCReconfiguration message including measConfig to setup intra NR measurement and reporting for event A2, A3 and A4.
- 7. The UE sends MeasurementReport message to report event A4 with the measured RSRP value for Cell B
- 8. The SS transmits an RRCReconfiguration message including sCellToAddModList with SCell

addition to configure Cell B as SCC. Refer to Table14.1.2.5.5-2 for parameter configuration

- 9. The UE transmits an RRCReconfigurationComplete message
- 10. SS activates Cell B as SCC by sending the activation MAC CE. Refer TS 38.321, clauses 5.9, 6.1.3.10.
- 11. Begin uplink TCP transmission. SS schedules UL data on PCC every UL slot and schedules UL data on SCC for the slots which is not collided with UL slots on PCC.
- 12. Keep uplink TCP transmission for 90 seconds and record TCP average throughput result. Verify data transmission on both PCC and SCC.
- 13. SS configures the cell power according to T2 in Table 14.1.2.5.5-1
- 14. Verify that UE sends MeasurementReport message to report event A2 and A3 with the measured RSRP value for NR Cell A, Cell Band Cell C
- 15. The SS transmits an RRCReconfiguration message including a reconfigurationWithSync to change PCell to Cell C and sCellToReleaseList to release Cell B as the SCell. Refer to Table 14.1.2.5.5-2 for parameter configuration
- 16. Verify that UE sends RRCReconfigurationComplete message in Cell C to indicate the successful handover
- 17. Verify that UE sends MeasurementReport message in Cell C to report event A4 with the measured RSRP value for NR Cell D
- 18. The SS transmits an RRCReconfiguration message containing an sCellToAddModList with SCell Cell D. Refer to Table 14.1.2.5.5-3 for parameter configuration
- 19. Verify that UE sends RRCReconfigurationComplete
- 20. SS activates Cell D as SCC by sending the activation MAC CE. Refer TS 38.321, clauses 5.9, 6.1.3.10
- 21. Verify the TCP data transmission is continued on Cell C and Cell D. Keep uplink TCP transmission for 90 seconds and record TCP average throughput result.
- 22. SS configures the cell power according to T3 in Table 14.1.2.5.5-1
- 23. Verify that UE sends MeasurementReport message to report event A2 and A3 with the measured RSRP value for NR Cell C, Cell D and Cell A
- 24. The SS transmits an RRCReconfiguration message including a reconfigurationWithSync to change PCell to Cell A and sCellToReleaseList to release Cell D as the SCell. Refer to Table 14.1.2.5.5-2 for parameter configuration
- 25. Verify that UE sends RRCReconfigurationComplete message in Cell A to indicate the successful handover
- 26. Verify that UE sends MeasurementReport message in Cell A to report event A4 with the measured RSRP value for NR Cell B
- 27. The SS transmits an RRCReconfiguration message containing an sCellToAddModList with SCell Cell B. Refer to Table 14.1.2.5.5-3 for parameter configuration
- 28. Verify that UE sends RRCReconfigurationComplete
- 29. SS activates Cell B as SCC by sending the activation MAC CE. Refer TS 38.321, clauses 5.9, 6.1.3.10
- 30. Verify the TCP data transmission is continued on Cell A and Cell B. Keep uplink TCP transmission for 90 seconds and record TCP average throughput result.
- 31. Stop uplink data transmission.
- 32. SS sends RRCReconfigurationmessage containing an sCellToReleaseList with SCell NR Cell B

33. UE transmit an RRCReconfigurationComplete

POSTAMBLE

- 34. Switch Off UE, UE initiates a Detach procedure.
- 35. Deactivate Cell A , Cell B, Cell C and Cell D.

Table 14.1.2.5.5-2: RRCReconfiguration in step 14 and step 23

Derivation Path: TS 38.331 [6], clause 6.3.2		
Information Element	Value/remark	Comment
CellGroupConfig ::= SEQUENCE {		
spCellConfig SEQUENCE {		
reconfigurationWithSync SEQUENCE {		
spCellConfigCommon{		
physCellId	Physical Cell ID of Cell C	Step 14
	Physical Cell ID of Cell A	Step 23
downlinkConfigCommon {		
frequencyInfoDL::= SEQUENCE {		
absoluteFrequencySSB	504990	Step 14, Cell C
	513150	Step 23, Cell A
frequencyBandList	n41	
absoluteFrequencyPointA	503172	
scs-SpecificCarrier{		
offsetToCarrier	0	
subcarrierSpacing	kHz30	
carrierBandwidth	273	100M
}		
}		
}		
}		
}		
sCellToReleaseList SEQUENCE {	1 entry	
sCellIndex[1]	1	
}		
}		

Table 14.1.2.5.5-3: sCellToAddMod in RRCReconfiguration Message in step 8, step 17 and step 26

Derivation Path: TS 38.331 [6], clause 6.3.2		
Information Element	Value/remark	Comments
sCellToAddModList {	1 entry	
sCellIndex	1	
sCellConfigCommon ::= SEQUENCE {		
physCellId	Physical cell id of Cell	Step 17

	D	
	Physical cell id of Cell B	Step 8 and Step 26
downlinkConfigCommon ::= SEQUENCE {		
frequencyInfoDL::= SEQUENCE {		
absoluteFrequencySSB	154570	
frequencyBandList	n28	
absoluteFrequencyPointA	151720	
scs-SpecificCarrier{		
offsetToCarrier	0	
subcarrierSpacing	kHz15	
carrierBandwidth	160	
}		
}		
}		
uplinkConfigCommon::= SEQUENCE {		
frequencyInfoUL::= SEQUENCE {		
frequencyBandList	n28	
absoluteFrequencyPointA	140792	
}		
scs-SpecificCarrier{		
offsetToCarrier	0	
subcarrierSpacing	kHz15	
carrierBandwidth	160	30M
}		
initialUplinkBWP	Refer to Table 4.6.3-14	
	in TS 38.508-1	
}		
ssb-periodicityServingCell	ms20	
dmrs-TypeA-Position	pos2	
ssbSubcarrierSpacing	kHz15	
ss-PBCH-BlockPower	0	
}		

14.2.2.3.6 Expected Result

UE could support intra-frequency handover with continuous downlink data transmission and record the throughput before and after handover

Test band	Step	Expected UL TCP Throughput
CA_n41A+n28A	Step 11	[TBD]
100M+30M	Step 21	[TBD]
	Step 30	[TBD]

Table 14.1.2.5.6-1: Expected Result

14.2.2.4 SCell Removal and Addition with uplink data transmission, CA_n41A-n79A

14.2.2.4.1 Test Purpose

Test to verify that UE could support SCell removal and addition with continuous uplink data transmission in NR Inter-band n41 2Tx and n79 1Tx with unaligned frame boundary for R16 inter-band CA.

14.2.2.4.2 Reference specification

3GPP TS 38.331, 3GPP TS 38.508, 3GPP TS 38.321

14.2.2.4.3 Applicability

This test applies to Type2 UEs supporting NR DL CA _n41A-n79A

14.2.2.4.4 Test conditions

[SS configuration] NR Cell A, PCell Cell Id=01 TAC = 01 MCC = 460 MNC = 00 Test Band=n41 Test Frequency= f1 UL Modulation / Coding = 27 UL RB Allocation = Full UL 2x2MIMO = TRUE UL 256QAM = TRUE absoluteFrequencySSB=513150 absoluteFrequencyPointA=503172

```
NR Cell B, SCell
Cell Id=02 TAC = 01
MCC = 460 MNC = 00
Test Band=n79
Test Frequency= f1
UL Modulation / Coding = 27
UL RB Allocation = Full
UL 2x2MIMO = FALSE
UL 256QAM = TRUE
absoluteFrequencySSB=721824
```

NR Cell C, SCell Cell Id=03 TAC = 01 MCC = 460 MNC = 00

Test Band=n79 Test Frequency= f1 UL Modulation / Coding = 27 UL RB Allocation = Full UL 2x2MIMO = FALSE UL 256QAM = TRUE absoluteFrequencySSB=723360 absoluteFrequencyPointA=720048

The frame boundary of n41 Cell A and n79 Cell B are unaligned as indicated below. The slot boundary are aligned.

Cell A (n41)				D	D	D	D	D	D	D	S	U	U
Cell B (n79)	D	D	D	S	U	D	D	S	U	U			

[Common conditions]

Common conditions include a set of test points the UE needs to be tested in and the common test parameters for each transmission mode.

Test Point	Propagation Conditions	Correlation Matrices
NR-1	Static	N/A

[UE configuration]

The test USIM shall be inserted.

The UE is in AUTOMATIC network selection mode.

[Initial conditions]

SS

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Test Environment: Normal, as defined in TS 38.508-1 clause 4.1.

1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 Annex A, Figure A.3.1.1.3 and A.3.2 for NR CA.

UE UE is powered off

14.2.2.4.5 Test procedure

Time	Parameter	Unit	NR Cell A	NR Cell B	NR Cell C
т0	SS/PBCH,		-75	Not Active	Not Active
T1	SSS EPRE	dBm/SCS	-75	-75	Not Active

Table14.1.2.3.5-1: Time of cell power level and parameter changes

T2	-75	-95	-75
Т3	-75	-75	-95

PREAMBLE

- 1. SS Activates Cell A configures the corresponding Master Information Block and System Information Block broadcast.
- 2. The SS configures the initial power according to T0 in Table 14.1.2.3.5-1
- 3. The UE is powered ON.

MAIN BODY

- 4. UE performs a Registration procedure on NR Cell A to register for PS services according to TS 38.508 subclause 4.5.2. UE is in state RRC_CONNECTED
- 5. SS activates Cell B and configures the cell power according to T1 in Table14.1.2.3.5-1
- 6. The SS transmits an RRCReconfiguration message including measConfig to setup intra NR measurement and reporting for event A2, A3 and A4.
- 7. The UE sends MeasurementReport message to report event A4 with the measured RSRP value for Cell B
- The SS transmits an RRCReconfiguration message including sCellToAddModList with SCell addition to configure Cell B as SCC. Refer to Table 14.1.2.3.514.1.2.3.5-2 for parameter configuration
- 9. The UE transmits an RRCReconfigurationComplete message
- SS activates Cell B as SCC by sending the activation MAC CE. Refer TS 38.321, clauses 5.9, 6.1.3.10.
- 11. Begin uplink TCP transmission. SS schedules UL data on PCC every UL slot and schedules UL data on SCC for the slots which is not collided with UL slots on PCC.
- 12. Keep uplink TCP transmission for 90 seconds and record TCP average throughput result. Verify data transmission on both PCC and SCC.
- 13. SS configures the cell power according to T2 in Table14.1.2.3.5-1
- 14. Verify tht UE sends MeasurementReport message to report event A2 and A4 with the measured RSRP value for NR Cell A, Cell B and Cell C
- The SS transmits an RRCReconfiguration message including sCellToReleaseList to release Cell B as the SCell an sCellToAddModList to add Cell C as the SCell. Refer to Table 14.1.2.3.5-2 for parameter configuration
- 16. Verify that UE sends RRCReconfigurationComplete message in Cell A
- SS activates Cell C as SCC by sending the activation MAC CE. Refer TS 38.321, clauses 5.9, 6.1.3.10
- 18. Verify the TCP data transmission is continued on Cell A and Cell C. Keep uplink TCP transmission for 90 seconds and record TCP average throughput result.
- 19. SS configures the cell power according to T3 in Table 14.1.2.3.5-1
- 20. Verify that UE sends MeasurementReport message to report event A2 and A4 with the measured RSRP value for NR Cell A, Cell C and Cell B
- 21. The SS transmits an RRCReconfiguration message including sCellToReleaseList to release Cell C as the SCell an sCellToAddModList to add Cell B as the SCell. Refer to Table14.1.2.3.5-2 for

parameter configuration

- 22. Verify that UE sends RRCReconfigurationComplete message in Cell A
- 23. SS activates Cell B as SCC by sending the activation MAC CE. Refer TS 38.321, clauses 5.9, 6.1.3.10
- 24. Verify the TCP data transmission is continued on Cell A and Cell B. Keep uplink TCP transmission for 90 seconds and record TCP average throughput result.
- 25. Stop uplink data transmission.
- 26. SS sends RRCReconfigurationmessage containing an sCellToReleaseList with SCell NR Cell B
- 27. UE transmit an RRCReconfigurationComplete

POSTAMBLE

- 28. Switch Off UE, UE initiates a Detach procedure.
- 29. Deactivate Cell A , Cell B and Cell C.

Table 14.1.2.3.5-2: RRCReconfiguration Message in step 8, step 14 and Step 20

Derivation Path: TS 38.331 [6], clause 6.3.2		
Information Element	Value/remark	Comments
CellGroupConfig ::= SEQUENCE {		
sCellToReleaseList {	1 entry	
sCellIndex[1]	1	
}		
sCellToAddModList {	1 entry	
sCellIndex	2	
sCellConfigCommon ::= SEQUENCE {		
physCellId	Physical cell id of Cell C	Step 14
	Physical cell id of Cell B	Step 8 and Step 20
downlinkConfigCommon ::= SEQUENCE {		
frequencyInfoDL::= SEQUENCE {		
absoluteFrequencySSB	723360	Step 14
	721824	Step 8 and Step 20
frequencyBandList	n79	
absoluteFrequencyPointA	720048	
scs-SpecificCarrier{		
offsetToCarrier	0	
subcarrierSpacing	kHz30	
carrierBandwidth	273	
}		
}		
}		
uplinkConfigCommon ::= SEQUENCE {		
frequencyInfoUL	Not Present	
initialUplinkBWP	Refer to Table 4.6.3-14	
	in TS 38.508-1	

2:2
2 · 2
2 · 2
2.2
< . Z
2:2

14.2.2.4.6 Expected Result

UE could support intra-frequency SCell removal and additon with continuous uplink data transmission and record the throughput before and after handover

Table 14.2.2.4.6-1: Expected Resu	lt
Table 14.2.2.4.0-1. Expected hesu	ιι

Test band	Step	Expected UL TCP Throughput
CA_n41A+n79A	Step 11	[TBD]
100M+100M	Step 17	[TBD]
	Step 23	[TBD]

14.3 SUL

14.3.1 Throughput

14.3.1.1 UL Throughput under static channel, SUL_n41A-n83A

14.3.1.1.1 Test Purpose

To measure the UE uplink throughput performance while uploading TCP based data on SUL band.

14.3.1.1.2 Reference specification

3GPP TS 38.101,3GPP TS 38.331, 3GPP TS 38.508-1

14.3.1.1.3 Applicability

This test applies to Type2 UEs supporting NR SUL

14.3.1.1.4 Test conditions

[SS configuration] NR Cell A Cell Id=01 TAC = 01 MCC = 460 MNC = 00 Test Band=n41 Test Frequency= f1 absoluteFrequencySSB=513150 absoluteFrequencyPointA=503172

NR Cell B

Cell Id=02 TAC = 01 MCC = 460 MNC = 00 Test Band=n28 Test Frequency= f1 UL Modulation / Coding = 27 UL RB Allocation = Full UL 2x2MIMO = FALSE UL 256QAM = TRUE absoluteFrequencySSB=154570 DL absoluteFrequencyPointA= 151720 UL absoluteFrequencyPointA= 140720

[Common conditions]

Common conditions include a set of test points the UE needs to be tested in and the common test parameters for each transmission mode.

Test Point	Propagation Conditions	Correlation Matrices
NR-1	Static	N/A

[UE configuration]

The test USIM shall be inserted.

The UE is in AUTOMATIC network selection mode.

[Initial conditions]

SS

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Test Environment: Normal, as defined in TS 38.508-1 clause 4.1.

1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 Annex A, Figure A.3.1.1.4 and A.3.2 for NR SUL.

UE

UE is powered off

14.3.1.1.5 Test procedure

Table 14.3.1.1.5-1: Time of cel	l nower level and	narameter changes
	i power iever and	parameter changes

Time	Parameter	Unit	NR Cell A	NR Cell B
то	SS/PBCH,	dBm/SCS	-75	-90
T1	SSS EPRE		-90	-75

PREAMBLE

- 1. SS activates Cell A and configures the corresponding Master Information Block and System Information Block. SUL information is included in SIB1. Refer to Table 14.3.1.1.5-2 for parameter configuration
- 2. The SS configures the initial power according to T0 in Table 14.1.1.1.5-1
- 3. Set the parameters of the propagation condition according to Table 14.3.1.1.4-1.

MAIN BODY

- 4. The UE is powered ON.
- 5. UE performs a Registration procedure on NR Cell A to register for PS services according to TS 38.508 subclause 4.5.2. UE is in state RRC_CONNECTED
- 6. SS configures the cell power according to T1 in Table 14.3.1.1.5-1
- 7. SS transmits an RRCReconfiguration message including measConfig to setup intra NR measurement and reporting for event A5.
- 8. The UE sends MeasurementReport message to report event A5 with the measured RSRP value for Cell B
- 9. The SS transmits an RRCReconfiguration message including supplementaryUplink to configure SUL band. Refer to Table 14.3.1.1.5-2 for parameter configuration
- 10. The UE transmits an RRCReconfigurationComplete message
- 11. Begin uplink TCP transmission. SS schedules UL data transmission on SUL band.
- 12. Verify the uplink data transmission on SUL band. Keep uplink TCP transmission for 90 seconds and record uplink average TCP throughput result.
- 13. Stop uplink data transmission.
- 14. Repeat step 11-13 for one more iteration.
- 15. Calculate the average TCP throughput on the uplink channel over all iterations.

POSTAMBLE

- 16. Switch Off UE, UE initiates a Detach procedure.
- 17. Deactivate Cell A and Cell B.

Information Element	Value/remark	Comments
supplementaryUplink SEQUENCE {	UplinkConfigCommonSIB	
FrequencyInfoUL::= SEQUENCE {		
frequencyBandList	n83	
absoluteFrequencyPointA	140720	
<pre>scs-SpecificCarriers SEQUENCE {</pre>	1 entry	
SCS-SpecificCarrier1{		
offsetToCarrier	0	
subcarrierSpacing	kHz15	
carrierBandwidth	160	30M
}		
}		
}		
initialUplinkBWP ::= SEQUENCE {	BWP-UplinkCommon	
genericParameters {	BWP	
locationAndBandwidth	28875	
subcarrierSpacing	kHz15	
}		
}		
timeAlignmentTimerCommon	infinity	
}		

Table 14.3.1.1.5-2: supplementaryUplink in SIB1 Message in step 1

Table 14.3.1.1.5-2: supplementaryUplink in RRCReconfiguration Message in step 9

Derivation Path: TS 38.508-1, Table 4.6.3-167		
Information Element	Value/remark	Comments
SpCellConfig{		
spCellConfigDedicated {		
supplementaryUplink SEQUENCE {	UplinkConfig	
uplinkBWP-ToAddModList{	BWP-uplink	
bwp-Id	1	
Bwp-Common{		
genericParameters {	BWP	
LocationAndBandwidth	32174	
subcarrierSpacing	kHz15	
}		
}		
Bwp-Dedicated{	For parameters not specified refer	
	to TS 38.508-1 Table 4.6.3-15 with	
	condition SUL_NUL	

pusch-Config{		
dataScramblingIdentityPUSCH	PUSCH Scrambling Identity of Cell B	
}		
}		
uplinkTxSwitching-r16	Not Present	
}		
}		
}		

14.3.1.1.6 Expected Result

Calculate and record the average throughput on TCP layer. The average uplink TCP throughput shall meet or exceed the value in following table.

Editor Note: the expected throughput value may need to be further revised

Table 14.3.1.1.6-1: Expected Result

Test band	Expected UL TCP Throughput	
sul_n41A-n83A	[160 Mbps]	

14.3.1.2 UL Throughput under static channel, TX Switching, SUL_n41A-n83A

14.3.1.2.1 Test Purpose

To measure the UE uplink throughput performance while uploading TCP based data with TX switching on NUL and SUL band.

14.3.1.2.2 Reference specification

3GPP TS 38.101,3GPP TS 38.331, 3GPP TS 38.508-1

14.3.1.2.3 Applicability

This test applies to Type2 UEs supporting NR SUL

14.3.1.2.4 Test conditions

[SS configuration] NR Cell A, PCell Cell Id=01 TAC = 01 MCC = 460 MNC = 00 Test Band=n41 Test Frequency= f1 UL2x2MIMO = TRUE UL 256QAM = TRUE absoluteFrequencySSB=513150 absoluteFrequencyPointA=503172

NR Cell B, SPCell Cell Id=02 TAC = 01 MCC = 460 MNC = 00 Test Band=n28 Test Frequency= f1 UL Modulation / Coding = 27 UL RB Allocation = Full UL 2x2MIMO = FALSE UL 256QAM = TRUE absoluteFrequencySSB=154570 DL absoluteFrequencyPointA= 151720 UL absoluteFrequencyPointA= 140720

[Common conditions]

Common conditions include a set of test points the UE needs to be tested in and the common test parameters for each transmission mode.

Table 14.3.1.2.4-1: Test Points	Configuration

Test Point	Propagation Conditions	Correlation Matrices
NR-1	Static	N/A

[UE configuration]

The test USIM shall be inserted.

The UE is in AUTOMATIC network selection mode.

[Initial conditions]

SS

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Test Environment: Normal, as defined in TS 38.508-1 clause 4.1.

1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 Annex A, Figure A.3.1.1.4 and A.3.2 for NR SUL.

UE

UE is powered off

14.3.1.2.5 Test procedure

Table 14.3.1.2.5-1: Time of cell	power level and	parameter changes
	poner ierer ana	parameter changes

Time	Parameter	Unit	NR Cell A	NR Cell B
то	SS/PBCH,	dBm/SCS	-75	-90
T1	SSS EPRE		-85	-75

PREAMBLE

1. SS activates Cell A and configures the corresponding Master Information Block and System

Information Block. SUL information is included in SIB1. Refer to Table 14.3.1.1.5-2 for parameter configuration

- The SS configures the initial power according to T0 in Table 14.1.1.1.5-1 2.
- 3. Set the parameters of the propagation condition according to Table 14.3.1.2.4-1.

MAIN BODY

- 4. The UE is powered ON.
- UE performs a Registration procedure on NR Cell A to register for PS services according to 5. TS 38.508 subclause 4.5.2. UE is in state RRC CONNECTED
- 6. SS configures the cell power according to T1 in Table 14.3.1.2.5-1
- 7. SS transmits an RRCReconfiguration message including measConfig to setup intra NR measurement and reporting for event A5.
- The UE sends MeasurementReport message to report event A5 with the measured RSRP 8. value for Cell B
- The SS transmits an RRCReconfiguration message including supplementaryUplink to 9. configure SUL band with TX switching enabled. Refer to Table 14.3.1.2.5-2 for parameter configuration
- 10. The UE transmits an RRCReconfigurationComplete message
- 11. Begin uplink TCP transmission. SS schedules UL data transmission on NUL band and SUL band.
- 12. Verify the uplink data transmission on NUL and SUL band. Keep uplink TCP transmission for 90 seconds and record uplink average TCP throughput result.
- 13. Stop uplink data transmission.
- 14. Repeat step 11-13 for one more iteration.
- 15. Calculate the average TCP throughput on the uplink channel over all iterations.

POSTAMBLE

- 16. Switch Off UE, UE initiates a Detach procedure.
- 17. Deactivate Cell A and Cell B.

Derivation Path: TS 38.508-1, Table 4.6.3-167		
Information Element	Value/remark	Comments
SpCellConfig{		
spCellConfigDedicated {		
supplementaryUplink SEQUENCE {	UplinkConfig	
uplinkBWP-ToAddModList{	BWP-uplink	
bwp-Id	1	
Bwp-Common{		
genericParameters {	BWP	
LocationAndBandwidth	32174	
subcarrierSpacing	kHz15	
}		
}		

Bwp-Dedicated{	For parameters not specified refer	
	to TS 38.508-1 Table 4.6.3-15 with	
	condition SUL_NUL	
pusch-Config{		
dataScramblingIdentityPUSCH	PUSCH Scrambling Identity of Cell B	
}		
}		
uplinkTxSwitching-r16{		
uplinkTxSwitchingPeriodLocation-r16	TRUE	
uplinkTxSwitchingCarrier-r16	Carrier1	
}		
}		
}		
}		

14.3.1.2.6 Expected Result

Calculate and record the average throughput on TCP layer. The average uplink TCP throughput shall meet or exceed the value in following table.

Editor Note: the expected throughput value may need to be further revised

```
Table 14.3.1.2.6-1: Expected Result
```

Test band	Expected UL TCP Throughput
sul_n41A-n83A	[380 Mbps]

14.3.1.3 Bidirectional Throughput under static channel, SUL_n41A-n83A

14.3.1.3.1 Test Purpose

To measure the UE uplink throughput and downlink throughput based UDP data transmission with SUL band.

14.3.1.3.2 Reference specification

3GPP TS 38.101,3GPP TS 38.331, 3GPP TS 38.508-1

14.3.1.3.3 Applicability

This test applies to Type2 UEs supporting NR SUL

14.3.1.3.4 Test conditions

[SS configuration] NR Cell A Cell Id=01 TAC = 01 MCC = 460 MNC = 00 Test Band=n41

Test Frequency= f1 DL Modulation / Coding = 27 DL RB Allocation = Full DL 4x4 MIMO = TRUE DL 256QAM = TRUE absoluteFrequencySSB=513150 absoluteFrequencyPointA=503172

NR Cell B Cell Id=02 TAC = 01 MCC = 460 MNC = 00 Test Band=n28 Test Frequency= f1 UL Modulation / Coding = 27 UL RB Allocation = Full UL 2x2MIMO = FALSE UL 256QAM = TRUE absoluteFrequencySSB=154570 DL absoluteFrequencyPointA= 151720 UL absoluteFrequencyPointA= 140720

[Common conditions]

Common conditions include a set of test points the UE needs to be tested in and the common test parameters for each transmission mode.

Table 14.3.1.3.4-1:	Test Points Configuration
---------------------	---------------------------

Test Point	Propagation Conditions	Correlation Matrices
NR-1	Static	N/A

[UE configuration]

The test USIM shall be inserted.

The UE is in AUTOMATIC network selection mode.

[Initial conditions]

SS

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Test Environment: Normal, as defined in TS 38.508-1 clause 4.1.

1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 Annex A, Figure A.3.1.1.4 and A.3.2 for NR SUL.

UE

UE is powered off

14.3.1.3.5 Test procedure

Time	Parameter	Unit	NR Cell A	NR Cell B
то	SS/PBCH,	dBm/SCS	-75	-90
T1	SSS EPRE		-90	-75

Table 14.3.1.3.5-1: Time of cell power level and parameter changes

PREAMBLE

- SS activates Cell A and configures the corresponding Master Information Block and System Information Block. SUL information is included in SIB1. Refer to Table 14.3.1.1.5-2 for parameter configuration
- 2. The SS configures the initial power according to T0 in Table 14.3.1.3.5-1
- 3. Set the parameters of the propagation condition according to Table 14.3.1.3.4-1.

MAIN BODY

- 4. Execute test steps 4-10 in 14.3.1.1.5
- 5. Begin downlink and uplink UDP transmission simultaneous. For uplink transmission SS schedules UL data transmission on SUL band.
- 6. Keep bidirection UDP transmission for 90 seconds and record downlink and uplink average UDP throughput result.
- 7. Stop bidirection data transmission.
- 8. Repeat step 5-7 for one more iteration.
- 9. Calculate the average UDP throughput on the uplink channel and downlink channel over all iterations.

POSTAMBLE

- 10. Switch Off UE, UE initiates a Detach procedure.
- 11. Deactivate Cell A and Cell B.

14.3.1.3.6 Expected Result

Calculate and record the average throughput on UDP layer. The average uplink and downlink UDP throughput shall meet or exceed the value in following table.

Editor Note: the expected throughput value may need to be further revised

Table 14.3.1.3.6-1: Expected Result

	Test band	Expected UL TCP Throughput
Uplink	sul_n41A-n83A	[380 Mbps]
Downlink	n41	[1.4 Gbps]

14.3.1.4 Bidirectional Throughput under static channel, SUL_n41A-n83A and DL CA_n41A-n28A

14.3.1.4.1 Test Purpose

To measure the UE uplink throughput and downlink throughput based UDP data transmission with downlink CA and TX switching between NUL and SUL bands.

14.3.1.4.2 Reference specification

3GPP TS 38.101,3GPP TS 38.331, 3GPP TS 38.508-1

14.3.1.4.3 Applicability

This test applies to Type2 UEs supporting NR SUL

14.3.1.4.4 Test conditions

[SS configuration] NR Cell A Cell Id=01 TAC = 01 MCC = 460 MNC = 00 Test Band=n41 Test Frequency= f1 UL Modulation / Coding = 27 UL RB Allocation = Full UL 2x2MIMO = TRUE UL 256QAM = TRUE DL Modulation / Coding = 27 DL RB Allocation = Full DL 4x4 MIMO = TRUE DL 256QAM = TRUE absoluteFrequencySSB=513150 absoluteFrequencyPointA=503172

```
NR Cell B
Cell Id=02 TAC = 01
MCC = 460 MNC = 00
Test Band=n28
Test Frequency= f1
UL Modulation / Coding = 27
UL RB Allocation = Full
UL 2x2MIMO = FALSE
UL 256QAM = TRUE
absoluteFrequencySSB=154570
DL absoluteFrequencyPointA= 151720
UL absoluteFrequencyPointA= 140720
```

[Common conditions]

Common conditions include a set of test points the UE needs to be tested in and the common test parameters for each transmission mode.

ĺ	Test Point	Propagation Conditions	Correlation Matrices
	NR-1	Static	N/A

Table 14.3.1.3.5-1: Test Points Config	uration
--	---------

[UE configuration]

The test USIM shall be inserted.

The UE is in AUTOMATIC network selection mode.

[Initial conditions]

SS

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Test Environment: Normal, as defined in TS 38.508-1 clause 4.1.

1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 Annex A, Figure A.3.1.1.4 and A.3.2 for NR SUL.

UE

UE is powered off

14.3.1.4.5 Test procedure

Table 14.3.1.4.5-1: Ti	ime of cell power l	evel and r	parameter changes
10010 1 110121 110 11		0 0 0 0 0 0 0 p	

Time	Parameter	Unit	NR Cell A	NR Cell B
то	SS/PBCH,	dBm/SCS	-75	-90
T1	SSS EPRE		-85	-75

PREAMBLE

- 1. SS activates Cell A and configures the corresponding Master Information Block and System Information Block. SUL information is included in SIB1. Refer to Table 14.3.1.1.5-2 for parameter configuration
- 2. The SS configures the initial power according to T0 in Table 14.3.1.4.5-1
- 3. Set the parameters of the propagation condition according to Table 14.3.1.3.5-1.

MAIN BODY

- 4. The UE is powered ON.
- 5. UE performs a Registration procedure on NR Cell A to register for PS services according to TS 38.508 subclause 4.5.2. UE is in state RRC_CONNECTED
- 6. SS configures the cell power according to T1 in Table 14.3.1.2.5-1
- 7. SS transmits an RRCReconfiguration message including measConfig to setup intra NR measurement and reporting for event A5.
- 8. The UE sends MeasurementReport message to report event A5 with the measured RSRP value for Cell B
- 9. The SS transmits an RRCReconfiguration message including supplementaryUplink to configure SUL band with TX switching enabled and sCellToAddModList with SCell addition to

configure Cell B as SCC. Refer to Table 14.3.1.4.5-2 for parameter configuration

- 10. The UE transmits an RRCReconfigurationComplete message
- 11. SS activates SCC by sending the activation MAC CE. Refer TS 38.321 , clauses 5.9, 6.1.3.10.
- 12. Begin downlink and uplink UDP transmission simultaneous. For uplink transmission SS schedules UL data transmission on NUL and SUL bands.
- 13. Keep bidirection UDP transmission for 90 seconds and record downlink and uplink average UDP throughput result.
- 14. Stop bidirection data transmission.
- 15. Repeat step 12-14 for one more iteration.
- 16. Calculate the average UDP throughput on the uplink channel and downlink channel over all iterations.

POSTAMBLE

- 17. Switch Off UE, UE initiates a Detach procedure.
- 18. Deactivate Cell A and Cell B.

Table 14.3.1.4.5-2: RRCReconfiguration	Message in step 9
Table 14.5.1.4.5 2. Micheleonjiguration	Micssuge in step 5

Derivation Path: TS 38.508-1, Table 4.6.3-167		
Information Element	Value/remark	Comments
CellGroupConfig{		
SpCellConfig	Refer to Table 14.3.1.2.5-2	Add SUL
sCellToAddModList	Refer to Table 14.1.1.2.5-2	Add DL CA
}		

14.3.1.4.6 Expected Result

Calculate and record the average throughput on UDP layer. The average uplink and downlink UDP throughput shall meet or exceed the value in following table.

Editor Note: the expected throughput value may need to be further revised

Table 14.3.1.4.6-1: Expected Result

	Test Band	Expected UL TCP Throughput
Uplink	sul_n41A-n83A	[380 Mbps]
Downlink	CA_n41A-n28A	[1.7 Gbps]

14.3.2 Mobility

14.3.2.1 SUL addition and release with data transmission

14.3.2.1.1 Test Purpose

Verify that UE supports SUL addition and release with continuous uplink data transmission and uplink TX switching.

14.3.2.1.2 Reference specification

3GPP TS 38.331, 3GPP TS 38.508-1

14.3.2.1.3 Applicability

This test applies to Type2 UEs supporting NR SUL

14.3.2.1.4 Test conditions

[SS configuration] NR Cell A Cell Id=01 TAC = 01 MCC = 460 MNC = 00 Test Band=n41 Test Frequency= f1 UL Modulation / Coding = 27 UL RB Allocation = Full UL 2x2MIMO = TRUE UL 256QAM = TRUE absoluteFrequencySSB=513150 absoluteFrequencyPointA=503172

NR Cell B Cell Id=02 TAC = 01 MCC = 460 MNC = 00 Test Band=n28 Test Frequency= f1 UL Modulation / Coding = 27 UL RB Allocation = Full UL 2x2MIMO = FALSE UL 256QAM = TRUE absoluteFrequencySSB=154570 DL absoluteFrequencyPointA= 151720 UL absoluteFrequencyPointA= 140720

[Common conditions]

Common conditions include a set of test points the UE needs to be tested in and the common test parameters for each transmission mode.

Test Point	Propagation Conditions	Correlation Matrices
NR-1	Static	N/A

[UE configuration]

The test USIM shall be inserted.

The UE is in AUTOMATIC network selection mode.

[Initial conditions]

SS

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Test Environment: Normal, as defined in TS 38.508-1 clause 4.1.

1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 Annex A, Figure A.3.1.1.4 and A.3.2 for NR SUL.

UE

UE is powered off

14.3.2.1.5 Test procedure

Table 14.1.1.1.5-1: Time of cell power level and parameter changes

Time	Parameter	Unit	NR Cell A	NR Cell B
T0			-75	-90
T1	SS/PBCH,	dBm/SCS	-90	-75
T2	SSS EPRE		-85	-85

PREAMBLE

- SS activates Cell A and configures the corresponding Master Information Block and System Information Block broadcast. SUL information is included in SIB1. Refer to Table 14.3.1.1.5-2 for parameter configuration
- 2. SS configures the initial power of Cell A according to T0 in Table 14.1.1.1.5-1
- 3. SS activates Cell B and configures the cell power according to T0 in Table 14.1.1.1.5-1

MAIN BODY

- 4. The UE is powered ON.
- 5. UE performs a Registration procedure on NR Cell A to register for PS services according to TS 38.508 subclause 4.5.2. UE is in state RRC_CONNECTED
- 6. Begin uplink TCP transmission. Verify data transmission on CellA NUL band.
- 7. SS configures the cell power according to T1 in Table 14.1.1.1.5-1
- 8. SS transmits an RRCReconfiguration message including measConfig to setup intra NR measurement and reporting for event A5.
- 9. The UE sends MeasurementReport message to report event A5 with the measured RSRP value for Cell B
- 10. The SS transmits an RRCReconfiguration message including supplementaryUplink to configure SUL band. Refer to Table 14.1.1.1.5-2 for parameter configuration
- 11. The UE transmits an RRCReconfigurationComplete message
- 12. SS schedules UL data transmssion on SUL band.
- 13. Verify that UE could keep data transmission on Cell A SUL band.
- 14. SS configures the cell power according to T2 in Table 14.1.1.1.5-1
- 15. SS schedules UL data transmssion on both NUL band and SUL band.
- 16. Verify that UE could keep data transmission on Cell A NUL band and SUL band

simultaneously.

- 17. Stop uplink data transmission.
- The SS transmits an RRCReconfiguration message to release SUL band. Refer to Table Table 14.1.1.1.5-3 for parameter configuration
- 19. UE transmit an RRCReconfigurationComplete

POSTAMBLE

- 20. Switch Off UE, UE initiates a Detach procedure.
- 21. Deactivate Cell A and Cell B.

Table 14.1.1.1.5-2: supplementaryUplink in RRCReconfiguration Message in step 10

Derivation Path: TS 38.508-1, Table 4.6.3-167		
Information Element	Value/remark	Comments
SpCellConfig{		
spCellConfigDedicated {		
supplementaryUplink SEQUENCE {	UplinkConfig	
uplinkBWP-ToAddModList{	BWP-uplink	
bwp-Id	1	
Bwp-Common{		
genericParameters {	BWP	
LocationAndBandwidth	32174	
subcarrierSpacing	kHz15	
}		
}		
Bwp-Dedicated{	For parameters not specified refer	
	to TS 38.508-1 Table 4.6.3-15 with	
	condition SUL_NUL	
pusch-Config{		
dataScramblingIdentityPUSCH	PUSCH Scrambling Identity of Cell B	
}		
}		
uplinkTxSwitching-r16{		
uplinkTxSwitchingPeriodLocation-r16	TRUE	
uplinkTxSwitchingCarrier-r16	Carrier1	
}		
}		
}		
}		

Table 14.1.1.1.5-3: supplementaryUplink in RRCReconfiguration Message in step 18

Derivation Path: TS 38.508-1, Table 4.6.3-167		
Information Element	Value/remark	Comments
ServingCellConfig {		

supplementaryUplinkRelease-r16	TRUE	
}		

14.3.2.1.6 Expected Result

At step 1, UE could select Cell A and initiate registration At step 9, UE could sends MeasurementReport message to report event A5 At step 13, UE could transmit uplink data on SUL band At step 16, UE could transmit uplink data on NUL and SUL bands simultaneously At step 19, UE could successfully release SUL.

14.3.2.2 NUL handover with data transmission

14.3.2.2.1 Test Purpose

Verify that UE supports NUL handover with continuous uplink data transmission while SUL is unchanged.

14.3.2.2.2 Reference specification

3GPP TS 38.331, 3GPP TS 38.508-1

14.3.2.2.3 Applicability

This test applies to Type2 UEs supporting NR SUL

14.3.2.2.4 Test conditions

```
[SS configuration]
NR Cell A
Cell Id=01 TAC = 01
MCC = 460 MNC = 00
Test Band=n41
Test Frequency= f1
UL Modulation / Coding = 27
UL RB Allocation = Full
UL 2x2MIMO = TRUE
UL 256QAM = TRUE
absoluteFrequencySB=513150
absoluteFrequencyPointA=503172
```

NR Cell B Cell Id=02 TAC = 01 MCC = 460 MNC = 00 Test Band=n28 Test Frequency= f1

UL Modulation / Coding = 27 UL RB Allocation = Full UL 2x2MIMO = FALSE UL 256QAM = TRUE absoluteFrequencySSB=154570 DL absoluteFrequencyPointA= 151720 UL absoluteFrequencyPointA= 140720

NR Cell C Cell Id=03 TAC = 01 MCC = 460 MNC = 00 Test Band=n41 Test Frequency= f1 UL Modulation / Coding = 27 UL RB Allocation = Full UL 2x2MIMO = TRUE UL 256QAM = TRUE absoluteFrequencySSB = 504990 absoluteFrequencyPointA=503172

[Common conditions]

Common conditions include a set of test points the UE needs to be tested in and the common test parameters for each transmission mode.

Table 14.1.1.1.4-1: Test Points Config	uration
--	---------

Test Point	Propagation Conditions	Correlation Matrices
NR-1	Static	N/A

[UE configuration]

The test USIM shall be inserted.

The UE is in AUTOMATIC network selection mode.

[Initial conditions]

SS

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Test Environment: Normal, as defined in TS 38.508-1 clause 4.1.

1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 Annex A, Figure A.3.1.1.4 and A.3.2 for NR SUL.

UE

UE is powered off.

14.3.2.2.5 Test procedure

Table 14.3.2.2.5-1: Time of cell power level and parameter changes

Time	Parameter	Unit	NR Cell A	NR Cell B	NR Cell C
т0			-75	-90	Not Active
T1	SS/PBCH, SSS EPRE	dBm/SCS	-85	-75	Not Active
T2			-90	-75	-75

PREAMBLE

- 1. SS activates Cell A and configures the corresponding Master Information Block and System Information Block broadcast. SUL information is included in SIB1. Refer to Table 14.3.1.1.5-2 for parameter configuration
- 2. SS configures the initial power of Cell A according to T0 in Table 14.3.2.2.5-1
- 3. SS activates Cell B and configures the cell power according to T0 in Table 14.3.2.2.5-1

MAIN BODY

- 4. The UE is powered ON.
- 5. UE performs a Registration procedure on NR Cell A to register for PS services according to TS 38.508 subclause 4.5.2. UE is in state RRC_CONNECTED
- 6. Begin uplink TCP transmission. Verify data transmission on CellA NUL band.
- 7. SS configures the cell power according to T1 in Table 14.3.2.2.5-1
- 8. SS transmits an RRCReconfiguration message including measConfig to setup intra NR measurement and reporting for event A5.
- 9. The UE sends MeasurementReport message to report event A5 with the measured RSRP value for Cell B
- 10. The SS transmits an RRCReconfiguration message including supplementaryUplink to configure SUL band. Refer to Table 14.3.1.2.5-2 for parameter configuration
- 11. The UE transmits an RRCReconfigurationComplete message
- 12. SS schedules UL data transmssion on both NUL band and SUL band.
- 13. Verify that UE could keep data transmission on Cell A NUL band and SUL band simultaneously.
- 14. SS active Cell C and configures the MIB and System Informationt. SUL information is included in SIB1. Refer to Table 14.3.1.1.5-2 for parameter configuration
- 15. SS configures the cell power of Cell A and Cell C according to T2 in Table 14.3.2.2.5-1
- 16. The SS transmits an RRCReconfiguration message including reconfigurationWithSync to trigger the handover from Cell A to Cell C and supplementaryUplink to keep SUL unchanged. Refer to Table 14.3.2.2.5-2 for parameter configuration
- 17. The UE transmits an RRCReconfigurationComplete message on Cell C
- 18. Verify that UE could continue the data transmission on Cell C NUL band and SUL band and no throughout decline compared to the throughput at step 13.
- 19. Stop uplink data transmission.
- 20. The SS transmits an RRCReconfiguration message on Cell C to release SUL band. Refer to Table 14.1.1.1.5-3 for parameter configuration
- 21. UE transmit an RRCReconfigurationComplete

POSTAMBLE

22. Switch Off UE, UE initiates a Detach procedure.

23. Deactivate Cell C and Cell B.

14.3.2.2.6 Expected Result

At step 17, UE could successfully complete the handover from Cell A to Cell C At step 18, UE could transmit uplink data on NUL and SUL bands simultaneously and there is no decrease in throughput

14.3.2.3 SUL change with data transmission

14.3.2.3.1 Test Purpose

Verify that UE supports SUL change with continuous uplink data transmission while NUL is unchanged.

14.3.2.3.2 Reference specification

3GPP TS 38.331, 3GPP TS 38.508-1

14.3.2.3.3 Applicability

This test applies to Type2 UEs supporting NR SUL

14.3.2.3.4 Test conditions

```
[SS configuration]
NR Cell A
Cell Id=01 TAC = 01
MCC = 460 MNC = 00
Test Band=n41
Test Frequency= f1
UL Modulation / Coding = 27
UL RB Allocation = Full
UL 2x2MIMO = TRUE
UL 256QAM = TRUE
absoluteFrequencySSB=513150
absoluteFrequencyPointA=503172
```

NR Cell B Cell Id=02 TAC = 01 MCC = 460 MNC = 00 Test Band=n28 Test Frequency= f1 UL Modulation / Coding = 27 UL RB Allocation = Full UL 2x2MIMO = FALSE UL 256QAM = TRUE

absoluteFrequencySSB=154570 DL absoluteFrequencyPointA= 151720 UL absoluteFrequencyPointA= 140720

NR Cell C Cell Id=03 TAC = 01 MCC = 460 MNC = 00 Test Band=n28 Test Frequency= f1 UL Modulation / Coding = 27 UL RB Allocation = Full UL 2x2MIMO = FALSE UL 256QAM = TRUE absoluteFrequencySSB = 151720 absoluteFrequencyPointA= 140720

[Common conditions]

Common conditions include a set of test points the UE needs to be tested in and the common test parameters for each transmission mode.

	Table 14.1.1.	1.4-1: Test	t Points (Configuration
--	---------------	-------------	------------	---------------

Test Point	Propagation Conditions	Correlation Matrices
NR-1	Static	N/A

[UE configuration]

The test USIM shall be inserted.

The UE is in AUTOMATIC network selection mode.

[Initial conditions]

SS

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Test Environment: Normal, as defined in TS 38.508-1 clause 4.1.

1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 Annex A, Figure A.3.1.1.4 and A.3.2 for NR SUL.

UE

UE is powered off.

14.3.2.3.5 Test procedure

Time	Parameter	Unit	NR Cell A	NR Cell B	NR Cell C
т0			-75	-90	Not Active
T1	SS/PBCH, SSS EPRE	dBm/SCS	-85	-75	Not Active
T2			-85	-90	-75

PREAMBLE

- SS activates Cell A and configures the corresponding Master Information Block and System Information Block broadcast. SUL information is included in SIB1. Refer to Table 14.3.1.1.5-2 for parameter configuration
- 2. SS configures the initial power of Cell A according to T0 in Table 14.3.2.3.5-1
- 3. SS activates Cell B and configures the cell power according to T0 in Table 14.3.2.3.5-1

MAIN BODY

- 4. Execute test steps 4-13 in 14.3.2.2.5
- 5. SS active Cell C. SS configures the cell power of Cell B and Cell C according to T2 in Table 14.3.2.3.5-1
- 6. The SS transmits an RRCReconfiguration message including supplementaryUplink to update the configuration of SUL band to Cell C. Refer to Table 14.3.2.3.5-2 for parameter configuration
- 7. The UE transmits an RRCReconfigurationComplete message on Cell A
- 8. Verify that UE could continue the data transmission on Cell A NUL band and Cell C SUL band and no throughout decline compared to the previous throughput on Cell A NUL band and Cell B SUL.
- 9. Stop uplink data transmission.
- 10. The SS transmits an RRCReconfiguration message on Cell A to release SUL band. Refer to Table 14.1.1.1.5-3 for parameter configuration
- 11. UE transmit an RRCReconfigurationComplete

POSTAMBLE

- 12. Switch Off UE, UE initiates a Detach procedure.
- 13. Deactivate Cell A and Cell C

Table 14.3.2.3.5-2: supplementaryUplink in R	RRCReconfiguration Message in step 6
--	--------------------------------------

Derivation Path: TS 38.508-1, Table 4.6.3-167			
Information Element	Value/remark	Comments	
SpCellConfig{			
spCellConfigDedicated {			
supplementaryUplink SEQUENCE {	UplinkConfig		
uplinkBWP-ToAddModList{	BWP-uplink		
bwp-Id	1		
Bwp-Common{			
genericParameters {	BWP		
LocationAndBandwidth	32174		
subcarrierSpacing	kHz15		
}			
}			
Bwp-Dedicated	For parameters not specified refer		
	to TS 38.508-1 Table 4.6.3-15 with		

	condition SUL_NUL	
pusch-Config{		
dataScramblingIdentityPUSCH	PUSCH Scrambling Identity of Cell C	
}		
}		
uplinkTxSwitching-r16{		
uplinkTxSwitchingPeriodLocation-r16	TRUE	
uplinkTxSwitchingCarrier-r16	Carrier1	
}		
}		
}		
}		

14.3.2.3.6 Expected Result

At step 7, UE could successfully complete the update of SUL band At step 8, UE could transmit uplink data on NUL and SUL bands simultaneously and there is no decrease in throughput

14.3.2.4 NUL handover and SUL change with data transmission

14.3.2.4.1 Test Purpose

Verify that UE supports NUL handover and SUL change simultaneously with continuous uplink data transmission.

14.3.2.4.2 Reference specification

3GPP TS 38.331, 3GPP TS 38.508-1

14.3.2.4.3 Applicability

This test applies to Type2 UEs supporting NR SUL

14.3.2.4.4 Test conditions

[SS configuration] NR Cell A Cell Id=01 TAC = 01 MCC = 460 MNC = 00 Test Band=n41 Test Frequency= f1 UL Modulation / Coding = 27 UL RB Allocation = Full UL 2x2MIMO = TRUE UL 256QAM = TRUE

absoluteFrequencySSB=513150 absoluteFrequencyPointA=503172

NR Cell B Cell Id=02 TAC = 01 MCC = 460 MNC = 00 Test Band=n28 Test Frequency= f1 UL Modulation / Coding = 27 UL RB Allocation = Full UL 2x2MIMO = FALSE UL 256QAM = TRUE absoluteFrequencySSB=154570 DL absoluteFrequencyPointA= 151720 UL absoluteFrequencyPointA= 140720

NR Cell C Cell Id=03 TAC = 01 MCC = 460 MNC = 00 Test Band=n41 Test Frequency= f1 UL Modulation / Coding = 27 UL RB Allocation = Full UL 2x2MIMO = TRUE UL 256QAM = TRUE absoluteFrequencySSB = 504990 absoluteFrequencyPointA=503172

```
NR Cell D
Cell Id=04 TAC = 01
MCC = 460 MNC = 00
Test Band=n28
Test Frequency= f1
UL Modulation / Coding = 27
UL RB Allocation = Full
UL 2x2MIMO = FALSE
UL 256QAM = TRUE
absoluteFrequencySSB = 151720
absoluteFrequencyPointA= 140720
```

[Common conditions]

Common conditions include a set of test points the UE needs to be tested in and the common test parameters for each transmission mode.

Table 14.1.1.1.4-1: Test Points Configuration

Test Point Propagation Conditions		Propagation Conditions	Correlation Matrices
	NR-1 Static		N/A

[UE configuration]

The test USIM shall be inserted.

The UE is in AUTOMATIC network selection mode.

[Initial conditions]

SS

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Test Environment: Normal, as defined in TS 38.508-1 clause 4.1.

1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 Annex A, Figure A.3.1.1.4 and A.3.2 for NR SUL.

UE

UE is powered off.

14.3.2.4.5 Test procedure

Time	Parameter	Unit	NR Cell A	NR Cell B	NR Cell C	NR Cell D
т0			-75	-90	Not Active	Not Active
T1	SS/PBCH,	dBm/SCS	-85	-75	Not Active	Not Active
T2	- SSS EPRE		-90	-90	-75	-75

PREAMBLE

- 1. SS activates Cell A and configures the corresponding Master Information Block and System Information Block broadcast. SUL information is included in SIB1. Refer to Table 14.3.1.1.5-2 for parameter configuration
- 2. SS configures the initial power of Cell A according to T0 in Table 14.3.2.4.5-1
- 3. SS activates Cell B and configures the cell power according to T0 in Table 14.3.2.4.5-1

MAIN BODY

- 4. Execute test steps 4-13 in 14.3.2.2.5
- 5. SS active Cell C and Cell D. SS configures the MIB and System Informationt for Cell C. SUL information is included in SIB1. Refer to Table 14.3.1.1.5-2 for parameter configuration
- 6. SS configures the cell power of Cel A, Cell B, Cell C and Cell D according to T2 in Table 14.3.2.4.5-1
- 7. The SS transmits an RRCReconfiguration message including reconfigurationWithSync to trigger the handover from Cell A to Cell C. Refer to Table 14.3.2.4.5-2 for parameter configuration
- 8. The UE transmits an RRCReconfigurationComplete message on Cell C
- 9. The SS transmits an RRCReconfiguration message including supplementaryUplink to add SUL band. Refer to Table 14.3.2.4.5-3 for parameter configuration

- 10. The UE transmits an RRCReconfigurationComplete message on Cell C
- 11. Verify that UE could continue the data transmission on Cell C NUL band and Cell D SUL band and no throughout decline compared to the previous throughput on Cell A NUL band and Cell B SUL.
- 12. Stop uplink data transmission.
- 13. The SS transmits an RRCReconfiguration message on Cell A to release SUL band. Refer to Table 14.1.1.1.5-3 for parameter configuration
- 14. UE transmit an RRCReconfigurationComplete

POSTAMBLE

- 15. Switch Off UE, UE initiates a Detach procedure.
- 16. Deactivate Cell A and Cell C

	2. Interceconingaration in step /	
Derivation Path: TS 38.331 [6], clause 6.3.2		
Information Element	Value/remark	Comment
CellGroupConfig ::= SEQUENCE {		
spCellConfig SEQUENCE {		
reconfigurationWithSync SEQUENCE {		
spCellConfigCommon{		
physCellId	Physical Cell ID of Cell C	
}		
}		
}		
}		

Table 14.3.2.4.5-2: RRCReconfiguration in step 7

Table 14.3.2.4.5-3: supplementary Uplink in RRCReconfiguration Message in step 9

Derivation Path: TS 38.508-1, Table 4.6.3-167		
Information Element	Value/remark	Comments
SpCellConfig{		
spCellConfigDedicated {		
supplementaryUplink SEQUENCE {	UplinkConfig	
uplinkBWP-ToAddModList{	BWP-uplink	
bwp-Id	1	
Bwp-Common{		
genericParameters {	BWP	
LocationAndBandwidth	32174	
subcarrierSpacing	kHz15	
}		
}		
Bwp-Dedicated	For parameters not specified refer	
	to TS 38.508-1 Table 4.6.3-15 with	
	condition SUL_NUL	

pusch-Config{		
dataScramblingIdentityPUSCH	PUSCH Scrambling Identity of Cell D	
}		
}		
uplinkTxSwitching-r16{		
uplinkTxSwitchingPeriodLocation-r16	TRUE	
uplinkTxSwitchingCarrier-r16	Carrier1	
}		
}		
}		
}		

14.3.2.4.6 Expected Result

At step 7, UE could successfully complete the update of SUL band At step 11, UE could transmit uplink data on NUL and SUL bands simultaneously and there is no decrease in throughput

14.3.2.5 NUL handover to NR cell with data transmission

14.3.2.5.1 Test Purpose

Verify that UE supports NUL handover to NR FDD cell with continuous uplink data transmission.

14.3.2.5.2 Reference specification

3GPP TS 38.331, 3GPP TS 38.508-1

14.3.2.5.3 Applicability

This test applies to Type2 UEs supporting NR SUL

14.3.2.5.4 Test conditions

```
[SS configuration]
NR Cell A
Cell Id=01 TAC = 01
MCC = 460 MNC = 00
Test Band=n41
Test Frequency= f1
UL Modulation / Coding = 27
UL RB Allocation = Full
UL 2x2MIMO = TRUE
UL 256QAM = TRUE
absoluteFrequencySSB=513150
absoluteFrequencyPointA=503172
```


NR Cell B Cell Id=02 TAC = 01 MCC = 460 MNC = 00 Test Band=n28 Test Frequency= f1 UL Modulation / Coding = 27 UL RB Allocation = Full UL 2x2MIMO = FALSE UL 256QAM = TRUE absoluteFrequencySSB=154570 DL absoluteFrequencyPointA= 151720 UL absoluteFrequencyPointA= 140720

NR Cell C Cell Id=03 TAC = 01 MCC = 460 MNC = 00 Test Band=n28 Test Frequency= f1 UL Modulation / Coding = 27 UL RB Allocation = Full UL 2x2MIMO = FALSE UL 256QAM = TRUE absoluteFrequencySSB = 151720 absoluteFrequencyPointA= 140720

[Common conditions]

Common conditions include a set of test points the UE needs to be tested in and the common test parameters for each transmission mode.

Dropostion Cor	nditions	Correlation Ma
Table 14.3.2.5.	.4-1: Test Points Confi	iguration

Test Point	Propagation Conditions	Correlation Matrices
NR-1 Static		N/A

[UE configuration]

The test USIM shall be inserted.

The UE is in AUTOMATIC network selection mode.

[Initial conditions]

SS

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Test Environment: Normal, as defined in TS 38.508-1 clause 4.1.

1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 Annex A, Figure A.3.1.1.4 and A.3.2 for NR SUL.

UE

UE is powered off.

14.3.2.5.5 Test procedure

Table 14.3.2.5.5-1: Time of cell	power level	l and parameter	changes
	pone		0

Time	Parameter	Unit	NR Cell A	NR Cell B	NR Cell C
т0	SS/PBCH, SSS EPRE		-75	-90	Not Active
T1		dBm/SCS	-85	-75	Not Active
T2			-90	-90	-75

PREAMBLE

- SS activates Cell A and configures the corresponding Master Information Block and System Information Block broadcast. SUL information is included in SIB1. Refer to Table 14.3.1.1.5-2 for parameter configuration
- 2. SS configures the initial power of Cell A according to T0 in Table 14.3.2.5.5-1
- 3. SS activates Cell B and configures the cell power according to T0 in Table 14.3.2.5.5-1

MAIN BODY

- 4. Execute test steps 4-13 in 14.3.2.2.5
- 5. SS active Cell C. SS configures the cell power of Cel A, Cell B and Cell C according to T2 in Table 14.3.2.5.5-1
- 6. The SS transmits an RRCReconfiguration message including reconfigurationWithSync to trigger the handover from Cell A to Cell C. Refer to Table 14.3.2.5.5-2 for parameter configuration
- 7. The UE transmits an RRCReconfigurationComplete message on Cell C
- 8. Verify that UE could continue the data transmission on Cell C and no throughout decline compared to the previous throughput on Cell B SUL.
- 9. Stop uplink data transmission.

POSTAMBLE

- 10. Switch Off UE, UE initiates a Detach procedure.
- 11. Deactivate Cell A and Cell C

Derivation Path: TS 38.331 [6], clause 6.3.2		
Information Element	Value/remark	Comment
CellGroupConfig ::= SEQUENCE {		
spCellConfig SEQUENCE {		
reconfigurationWithSync SEQUENCE {		
spCellConfigCommon{		
physCellId	Physical Cell ID of Cell C	

downlinkConfigCommon::= SEQUENCE {		
frequencyInfoDL::= SEQUENCE {	454570	
absoluteFrequencySSB	154570	
frequencyBandList	n28	
absoluteFrequencyPointA	151720	
scs-SpecificCarrier{		
offsetToCarrier	0	
subcarrierSpacing	kHz15	
carrierBandwidth	160	
}		
initialDownlinkBWP ::= SEQUENCE {	BWP-UplinkCommon	
genericParameters {		
locationAndBandwidth	28875	
subcarrierSpacing	kHz15	
}		
}		
}		
}		
uplinkConfigCommon{		
FrequencyInfoUL::= SEQUENCE {		
frequencyBandList	n28	
absoluteFrequencyPointA	140720	
scs-SpecificCarriers SEQUENCE {	1 entry	
SCS-SpecificCarrier1{		
offsetToCarrier	0	
subcarrierSpacing	kHz15	
carrierBandwidth	160	30M
}		
}		
}		
initialUplinkBWP ::= SEQUENCE {	BWP-UplinkCommon	
genericParameters {	BWP	
locationAndBandwidth	28875	
subcarrierSpacing	kHz15	
}		
}		
timeAlignmentTimerCommon	infinity	
}		
}		
}		
}		
}		
J		

14.3.2.5.6 Expected Result

At step 7, UE could successfully handover to Cell C At step 11, UE could transmit uplink data on Cell C and there is no decrease in throughput compared to the throughput on previous SUL band

Appendix A Test Channel Parameters

Appendix B Document Change Record

Date	Version	Revision Contents
27-Nov-2018	0.1	First draft release to task members to be used as
		starting template.
04-Jan-2019	0.2	Incorporated the following CRs:-
		Anritsu-20181221-01
		Anritsu-20181221-02
		CMCC-20181217-01
		DTG-20190101-01
		Keysight-20181223-01-NSA
		Keysight-20181223-02-SA
		RNS-20181217-01
		RNS-20181217-02
		RNS-20181217-03
		RNS-20181224-01
		RNS-20181224-02
		RNS-20181224-03
23-Jan-2019	0.3	CMCC-20190120-01
23-Jan-2019	0.4	Anritsu-20190115-01
		Anritsu-20190115-02
		Anritsu-20190115-03
		Anritsu-20190115-04
		DTG-20190115-01
		Keysight-20190116-01
31-Jan-2019	0.5	Anritsu-20190130-01
		Anritsu-20190131-01
		CMCC-20190130-02
		DTG-20190129-01
		Keysight-20190129-01
12-Feb-2019	1.0	Anritsu-20190201-01
		Anritsu-20190208-01
		RNS-20190212-01
08-Mar-2019	1.0.1	CMCC-20190304-01
		DTG-20190304-01
		DTG-20190306-01
22-Mar-2019	1.0.2	CMCC-20190321-01
		R&S-20190311-01
		DTG-20190308-01
		DTG-20190320-01
08-Apr-2019	1.5.0	DTG-20190329-01
		Keysight-20190402-01
		StarPoint-20190401-01
6-May-2019	1.5.1	CMCC-20190422-01
		RS-20190410-01
		RS-20190410-02r1

		RS-20190412-03
30-May-2019	1.5.2	CMCC-20190426-01
50-1viay-2019	1.J.2	CMCC-20190510-01r2
		CMCC-20190513-01
		CMCC-20190522-01
 16-Jun-2019	2.0	Post GTI members review.
10-3011-2013	2.0	Updated document version number only.
23-Aug-2019	2.0.1	CMCC-20190731-01
23-Aug-2013	2.0.1	CMCC-20190731-02
		CMCC-20190731-03
		CMCC-20190802-01
		CMCC-20190805-01
		CMCC-20190805-02
		RS-20190621-02
		Keysight-20190820-01
30-October-2019	2.5	Updated document version number only
50-0000001-2015	2.5	For GTI members review
11-November-2019	3.0	CMCC-20190830-01
8-June-2020	3.0.1	DTG-20200323-01
8-June-2020	5.0.1	CMCC-20200515-01
		CMCC-20200515-01
		CMCC-20200515-02
		CMCC-20200515-04
		CMCC-20200513-04 CMCC-20200528-01
		CMCC-20200604-01
18-June-2020	3.5	Updated document version number only
12-Novermber-2020	4.0	DTG-20200323-02
12-100/01111001-2020	4.0	R&S-20200707-01
		R&S-20200707-02
		DTG-20200628-02
		CMCC-20200911-01
		CMCC-20200921-01
		CMCC-20201026-01
		R&S-20201102-01
		CMCC-20201105-01
		Keysight-20201105-02
		Keysight-20201105-02 Keysight-20201105-03
25-March-2021	4.1	Keysight-20201210-01
		Keysight-20201210-01 Keysight-20201210-02
		MTK-20201210-01
		MTK-20201210-01 MTK-20201210-02
		CMCC-20201230-02
		DTG-20210113-02
		CMCC-20210223-01r1

GTI 5G Function and Performance Test Specification v4.2 – September 2021

		Keysight-20210125-01r1
		Keysight-20210310-01
21-September-2021	4.2	DTG-20210301-02
		DTG-20210820-01
		DTG-20210820-03
		CMCC-20210604-01
		Keysight-20210323-BWP_switch_by_DCI
		Keysight-20210524-01
		CMCC-20210910-01